

    
      
          
            
  

	Introduction
	What is MOOSE and what is it good for?





	Installation
	Use pre-built packages

	Building MOOSE

	Graphical User Interface (GUI)

	Building moogli





	Quick Start
	Interactive Tutorials

	MOOSE GUI: Graphical interface for MOOSE

	Getting started with python scripting for MOOSE

	Demonstration of basic functionalities

	MOOSE Classes





	Cook Book
	Single Neuron Electrical Aspects (BioPhysics)

	Chemical Aspects

	Networking

	MultiScale Modeling





	Rdesignuer
	Rdesigneur: Building multiscale models

	Rdesigneur Examples





	Teaching Tutorials
	Chemical Bistables

	Chemical Oscillators

	Squid giant axon





	Graphics
	MOOGLI

	MatPlotLib





	References
	How to use the documentation





	Doxygen










	Release Notes

	Series chennapoda
	Version 3.2.0





	Series chamcham
	Version 3.1.3





	Known issues






Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Introduction



	What is MOOSE and what is it good for?









          

      

      

    

  

    
      
          
            
  
What is MOOSE and what is it good for?

MOOSE is the Multiscale Object-Oriented Simulation Environment. It is
designed to simulate neural systems ranging from subcellular components and
biochemical reactions to complex models of single neurons, circuits, and large
networks. MOOSE can operate at many levels of detail, from stochastic chemical
computations, to multicompartment single-neuron models, to spiking neuron
network models.


[image: **multiple scales in moose**]
Multiple scales can be modelled and simulated in MOOSE



MOOSE is multiscale: It can do all these calculations together. One of its major
uses is to make biologically detailed models that combine electrical and
chemical signaling.

MOOSE is object-oriented. Biological concepts are mapped into classes, and a
model is built by creating instances of these classes and connecting them by
messages. MOOSE also has numerical classes whose job is to take over difficult
computations in a certain domain, and do them fast. There are such solver
classes for stochastic and deterministic chemistry, for diffusion, and for
multicompartment neuronal models.

MOOSE is a simulation environment, not just a numerical engine: It provides data
representations and solvers (of course!), but also a scripting interface with
Python, graphical displays with Matplotlib, PyQt, and OpenGL, and support for
many model formats. These include SBML, NeuroML, GENESIS kkit and cell.p
formats, HDF5 and NSDF for data writing.








          

      

      

    

  

    
      
          
            
  
Installation



	Use pre-built packages

	Building MOOSE

	Graphical User Interface (GUI)

	Building moogli









          

      

      

    

  

    
      
          
            
  
Use pre-built packages


pip

If you only need python interface, the recommended way is via pip.

pip install pymoose --user





To install nightly version

pip install pymoose --pre --upgrade --user





We also have moose package with additional components such as gui and moogli.




Linux

We recommend that you use our repositories hosted at Open Build Service [https://build.opensuse.org/package/show/home:moose/moose].  Packages for most
linux distributions are available. Visit this page [https://software.opensuse.org/download.html?project=home:moose&package=moose]
to pick your distribution and follow instructions.


Note

moogli (tool to visualize network activity) is not available for CentOS-6.




Todo

Packages for gentoo






Mac OSX

MacOSX support for moose-gui is not complete yet because moose-gui depends on PyQt4 but that
world has moved onto PyQt5 (See the status here: https://github.com/BhallaLab/moose-gui/issues/16).
However, the python-scripting interface can be installed on OSX using homebrew

$ brew tap BhallaLab/moose
$ brew install moose





Or alternatively, via pip

$ pip install pymoose --user








Docker Images

Docker images of stable version are available from public repository.

$ docker pull bhallalab/moose
$ docker run -it --rm -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=$DISPLAY bhallalab/moose





This will launch xterm; run moosegui in terminal to lauch the GUI.






Building MOOSE

In case your distribution is not listed on our repository page [https://software.opensuse.org/download.html?project=home:moose&package=moose]
, or if you want to build the latest development code, read on.

First, you need to get the source code. You can use git (clone the
repository) or download snapshot of github repo by clicking on this link [https://github.com/BhallaLab/moose/archive/master.zip].

$ git clone https://github.com/BhallaLab/moose





(This will create folder called “moose”)
Or,

$ wget https://github.com/BhallaLab/moose/archive/master.zip
$ unzip master.zip





If you don’t want latest snapshot of MOOSE, you can download other released
versions from here [https://github.com/BhallaLab/moose/releases].


Install dependencies

Next, you need to install required dependencies. Depending on your OS, names of
following packages may vary.


Core MOOSE


	
	Required:

	
	cmake (version 2.8 or higher)


	g++ or clang (with c++11 support).


	gsl-1.16 or higher.










	
	Optional

	
	HDF5 (>=1.8.x) For reading and writing data into HDF5 based formats. Disabled by default.















Python interface for core MOOSE API (pymoose)


	
	Required

	
	python (Both 2.7 and 3.x versions are supported).


	python-dev. Python development headers and libraries, e.g. python-dev or python-devel


	NumPy ( >= 1.6.x) For array interface, e.g. python-numpy or numpy










	
	Optional

	
	networkx (>=1.x) For automatical layout


	pygraphviz. For automatic layout for chemical models


	matplotlib (>=2.x). For plotting simulation results


	python-libsbml. For reading and writing chemical models from and into SBML format


	pylibsbml












All of these dependencies can be installed using pip or your package manager.

On Debian/Ubuntu

$ sudo apt-get install libhdf5-dev cmake libgsl0-dev libpython-dev python-numpy





On CentOS/Fedora/RHEL/Scientific Linux

$ sudo yum install hdf5-devel cmake libgsl-dev python-devel python-numpy





On OpenSUSE

$ sudo zypper install hdf5-devel cmake libgsl-dev python-devel python-numpy










Build moose

$ cd /to/moose_directory/moose-core/
$ mkdir _build
$ cd _build
$ cmake  ..
$ make
$ ctest --output-on-failure  # optional
$ sudo make install





This will build pyMOOSE (MOOSE’s python extention), ctest will run few tests to
check if build process was successful.


Note

To install MOOSE into non-standard directory, pass additional argument
-DCMAKE_INSTALL_PREFIX=path/to/install/dir to cmake

$ cmake -DCMAKE_INSTALL_PREFIC=$HOME/.local ..





To use different version of python

$ cmake -DPYTHON_EXECUTABLE=/opt/python3/bin/python3 ..







After that installation is pretty easy

$ sudo make install





If everything went fine, you should be able to import moose in python shell.

>>> import moose










Graphical User Interface (GUI)

If you have installed the pre-built package, then you already have the GUI.
You can launch it by runnung moosegui command in terminal.

You can get the source of moose-gui from here [https://github.com/BhallaLab/moose-gui]. You can download it either by
clicking on this link [https://github.com/BhallaLab/moose-gui/archive/master.zip]
or by using git

$ git clone https://github.com/BhallaLab/moose-gui





Alternatively the moose-gui folder exists within the moose folder downloaded and built earlier in the installation process. It can be found under location_of_moose_folder/moose/moose-gui/.

Below are packages which you may want to install to use MOOSE Graphical User Interface.


	
	Required:

	
	PyQt4 (4.8.x). For Python GUI


	Matplotlib ( >= 2.x). For plotting simulation results


	NetworkX (1.x). For automatical layout










	
	Optional:

	
	python-libsbml. For reading and writing signalling models from and into SBML format












On Ubuntu/Debian, these can be installed with

$ sudo apt-get install python-matplotlib python-qt4





On CentOS/Fedora/RHEL

$ sudo yum install python-matplotlib python-qt4





Now you can fire up the GUI

$ cd /to/moose-gui
$ python mgui.py






Note

If you have installed moose package, then GUI is launched by
running following commnad:

$ moosegui










Building moogli

moogli is subproject of MOOSE for visualizing models. More details can
be found here [http://moose.ncbs.res.in/moogli].

Moogli is part of moose package. Building moogli can be tricky because of
multiple depednecies it has.


	
	Required

	
	OSG (3.2.x) For 3D rendering and simulation of neuronal models


	Qt4 (4.8.x) For C++ GUI of Moogli












To get the latest source code of moogli, click on this link [https://github.com/BhallaLab/moogli/archive/master.zip].

Moogli depends on OpenSceneGraph (version 3.2.0 or higher) which may not
be easily available for your operating system.
For this reason, we distribute required OpenSceneGraph with moogli
source code.

Depending on distribution of your operating system, you would need following
packages to be installed.

On Ubuntu/Debian

$ sudo apt-get install python-qt4-dev python-qt4-gl python-sip-dev libqt4-dev





On Fedora/CentOS/RHEL

$ sudo yum install sip-devel PyQt4-devel qt4-devel libjpeg-devel PyQt4





On openSUSE

$ sudo zypper install python-sip python-qt4-devel libqt4-devel python-qt4





After this, building and installing moogli should be as simple as

$ cd /path/to/moogli
$ mkdir _build
$ cd _build
$ cmake ..
$ make -j3
$ sudo make install





If you run into troubles, please report it on our github repository [https://github.com/BhallaLab/moose/issues].





          

      

      

    

  

    
      
          
            
  
Quick Start



	Interactive Tutorials

	MOOSE GUI: Graphical interface for MOOSE
	Contents

	Introduction

	Interface





	Getting started with python scripting for MOOSE
	Coding basics and how to use this document

	Importing moose and accessing documentation

	Setting the properties of elements: accessing fields

	Putting them together: setting up connections

	Scheduling

	Running the simulation

	Some more details

	Moving on





	Demonstration of basic functionalities
	Load and Run a Model

	Start, Stop, and setting clocks

	Run Python from MOOSE





	MOOSE Classes
	Messages

	Time

	Vectors

	Data Entries

	Interpolation

	Function

	SymCompartment

	Tables

	Data Types

	Threading

	PyMoose

	Mathematics with MOOSE

	Computing an arbitrary function

	Differential Equation Solving

	Harmonic Oscillatory Function

	Lotka-Voltera Model

	Vary Concentration with mathematical function













          

      

      

    

  

    
      
          
            
  
Interactive Tutorials

Some of the pages in the documentation, such as the python scripting page and teaching tutorials are available in interactive form.

These interactive tutorials serve as fully executable python environments that can run moose. Therefore, it is a great place to both learn about and play around with MOOSE.

All the currently available interactive tutorials are available by clicking the link below:

[image: ../../../_images/badge.svg]
 [https://mybinder.org/v2/gh/BhallaLab/moose-binder/master?filepath=home%2Fmooser%2FIndex.ipynb]



          

      

      

    

  

    
      
          
            
  
MOOSE GUI: Graphical interface for MOOSE

Upinder Bhalla, Harsha Rani, Aviral Goel

MOOSE is the Multiscale Object-Oriented Simulation Environment. It can do all these calculations together. One of its major uses is to make biologically detailed models that combine electrical and chemical signaling.

This document describes the salient features of the GUI and Kinetickit of MOOSE.




Contents


	Introduction


	Interface


	Menu Bar


	File


	New


	Load Model


	Connect BioModels


	Quit






	View


	Editor View


	Run View


	Dock Widgets


	SubWindows






	Help


	About MOOSE


	Built-in Documentation


	Report a bug










	Editor View


	Model Editor


	Property Editor






	Run View


	Simulation Controls


	Plot Widget


	Toolbar


	Context Menu



















Introduction

The Moose GUI currently allow you work on
chemical and electrical models using a interface. This
document describes the salient features of the GUI.




Interface

The interface layout consists of a menu bar and two
views, editor view and run view.


Menu Bar


[image: ]


The menu bar appears at the top of the main window. In Ubuntu 12.04, the
menu bar appears only when the mouse is in the top menu strip of the
screen. It consists of the following options -


File

The File menu option provides the following sub options


	New - Create a new chemical signalling model.


	Load Model - Load a chemical signalling or compartmental neuronal model from a file.


	Paper_2015_Demos Model - Loads and Runs chemical signalling or compartmental neuronal model from a file.


	Recently Loaded Models - List of models loaded in MOOSE. (Atleast one model should be loaded)


	Connect BioModels - Load chemical signaling models from the BioModels database.


	Save - Saves chemical model to Genesis/SBML format.


	Quit - Quit the interface.







View

View menu option provides the following sub options -


	Editor View - Switch to the editor view for editing models.


	Run View - Switch to run view for running models.


	Dock Widgets - Following dock widgets are provided






	Python - Brings up a full fledged python
interpreter integrated with MOOSE GUI. You can interact with
loaded models and load new models through the PyMoose API. The
entire power of python language is accessible, as well as
MOOSE-specific functions and classes.


	Edit - A property editor for viewing and
editing the fields of a selected object such as a pool, enzyme,
function or compartment. Editable field values can be changed by
clicking on them and overwriting the new values. Please be sure to
press enter once the editing is complete, in order to save your changes.








	SubWindows - This allows you to tile or tabify the run and editor views.







Help


	About Moose - Version and general information about MOOSE.


	Built-in documentation - Documentation of MOOSE GUI.


	Report a bug - Directs to the github bug tracker for reporting bugs.









Editor View

The editor view provides two windows -


	Model Editor - The model editor is a workspace to
edit and create models. Using click-and-drag from the icons in the
menu bar, you can create model entities such as chemical pools,
reactions, and so on. A click on any object brings its property
editor on screen (see below). In objects that can be interconnected,
a click also brings up a special arrow icon that is used to connect
objects together with messages. You can move objects around within
the edit window using click-and-drag. Finally, you can delete objects
by selecting one or more, and then choosing the delete option from
the pop-up menu. The links below is the screenshots point to the
details for the chemical signalling model editor.





[image: Chemical Signalling Model Editor]
Chemical Signalling Model Editor




	Property Editor - The property editor provides a way of viewing and editing the properties of objects selected in the model editor.





[image: Property Editor]
Property Editor






Run View

The Run view, as the name suggests, puts the GUI into a mode where the
model can be simulated. As a first step in this, you can click-and-drag
an object to the graph window in order to create a time-series plot for
that object. For example, in a chemical reaction, you could drag a pool
into the graph window and subsequent simulations will display a graph of
the concentration of the pool as a function of time. Within the Run View
window, the time-evolution of the simulation is displayed as an
animation. For chemical kinetic models, the size of the icons for
reactant pools scale to indicate concentration. Above the Run View
window, there is a special tool bar with a set of simulation controls to
run the simulation.


Simulation Controls


[image: Simulation Control]
Simulation Control



This panel allows you to control the various aspects of the simulation.


	Run Time - Determines duration for which simulation is to run. A simulation which has already run, runs further for the specified additional period.


	Reset - Restores simulation to its initial state; re-initializes all variables to t = 0.


	Stop - This button halts an ongoing simulation.


	Current time - This reports the current simulation time.


	Preferences - Allows you to set simulation and visualization related preferences.







Plot Widget


Toolbar

On top of plot window there is a little row of icons:


[image: ]


These are the plot controls. If you hover the mouse over them for a few
seconds, a tool-tip pops up. The icons represent the following functions:


	[image: image0] - Add a new plot window


	[image: image1] - Deletes current plot window


	[image: image2] - Toggle X-Y axis grid


	[image: image3] - Returns the plot display to its default position


	[image: image4] - Undoes or re-does manipulations you have done to the display.


	[image: image5] - The plots will pan around with the mouse when you hold the left button down. The plots will zoom with the mouse when you hold the right button down.


	[image: image6] - With the ``left mouse button``, this will zoom in to the specified rectangle so that the plots become bigger. With the ``right mouse button``, the entire plot display will be shrunk to fit into the specified rectangle.


	[image: image7] - You don’t want to mess with these .


	[image: image8] - Save the plot.







Context Menu

The context menu is enabled by right clicking on the plot window. It has
the following options -


	Export to CSV - Exports the plotted data to CSV format


	Toggle Legend - Toggles the plot legend


	Remove - Provides a list of plotted entities. The selected entity will not be plotted.
















          

      

      

    

  

    
      
          
            
  
Getting started with python scripting for MOOSE


[image: **multiple scales in moose**]
Multiple scales can be modelled and simulated in MOOSE



To see an interactive version of this page, click the following link

[image: ../../../_images/badge.svg]
 [https://mybinder.org/v2/gh/BhallaLab/moose-binder/master?filepath=home%2Fmooser%2Fquickstart%2FGetting%20started%20with%20python%20scripting%20for%20MOOSE.ipynb]This document describes how to use the moose module in Python
scripts or in an interactive Python shell. It aims to give you enough
overview to help you start scripting using MOOSE and extract farther
information that may be required for advanced work. Knowledge of
Python or programming in general will be helpful. If you just want to
simulate existing models in one of the supported formats, you can fire
the MOOSE GUI and locate the model file using the File menu and
load it. The GUI is described in separate document. If you
are looking for recipes for specific tasks, take a look at
cookbook. The example code in the boxes can be entered in
a Python shell.

MOOSE is object-oriented. Biological concepts are mapped into classes, and a model is built by creating instances of these classes and connecting them by messages. MOOSE also has numerical classes whose job is to take over difficult computations in a certain domain, and do them fast. There are such solver classes for stochastic and deterministic chemistry, for diffusion, and for multicompartment neuronal models.

MOOSE is a simulation environment, not just a numerical engine: It provides data representations and solvers (of course!), but also a scripting interface with Python, graphical displays with Matplotlib, PyQt, and OpenGL, and support for many model formats. These include SBML, NeuroML, GENESIS kkit and cell.p formats, HDF5 and NSDF for data writing.

Contents:



	Coding basics and how to use this document


	Importing moose and accessing documentation


	Setting the properties of elements: accessing fields


	Putting them together: setting up connections


	Scheduling


	Running the simulation


	Some more details


	Moving on







Coding basics and how to use this document

This page acts as the first stepping stone for learning how moose works. The tutorials here are intended to be interactive, and are presented as python commands. Python commands are identifiable by the >>> before the command as opposed to $ which identifies a command-line command.

>>> this_is_a_python_command





You are encouraged to run a python shell while reading through this documentation and trying out each command for yourself. Python shells are environments within your terminal wherein everything you type is interpreted as a python command. They can be accessed by typing

$ python





in your command-line terminal.

While individually typing lines of code in a python terminal is useful for practicing using moose and coding in general, note that once you close the python environment all the code you typed is gone and the moose models created are also lost. In order to ‘save’ models that you create, you would have to type your code in a text file with a .py extension. The easiest way to do this is to create a text file in command line, open it with a text editor (for example, gedit), and simply type your code in (make sure you indent correctly).

$ touch code.py
$ gedit code.py





Once you have written your code in the file, you can run it through your python environment.

$ python code.py





Note that apart from this section of the quickstart, most of the moose documentation is in the form of snippets. These are basically .py files with code that demonstrates a certain functionality in moose. If you see a dialogue box like this one:

You can view the code by clicking the green source button on the left side of the box. Alternatively, the source code for all of the examples in the documentation can be found in moose/moose-examples/snippets. Once you run each file in python, it is encouraged that you look through the code to understand how it works.

In the quickstart, most of the snippets demonstrate the functionality of specific classes. However, snippets in later sections such as the cookbook show how to do specific things in moose such as creating networks, chemical models, and synaptic channels.




Importing moose and accessing documentation

In a python script you import modules to access the functionalities they provide. In order to use moose, you need to import it within a python environment or at the beginning of your python script.

>>> import moose





This make the moose module available for use in Python. You can use Python’s built-in help function to read the top-level documentation for the moose module.

>>> help(moose)





This will give you an overview of the module. Press q to exit the pager and get back to the interpreter. You can also access the documentation for individual classes and functions this way.

>>> help(moose.connect)





To list the available functions and classes you can use dir
function 1.

>>> dir(moose)





MOOSE has built-in documentation in the C++-source-code independent of
Python. The moose module has a separate doc function to extract
this documentation.

>>> moose.doc('moose.Compartment')





The class level documentation will show whatever the author/maintainer
of the class wrote for documentation followed by a list of various kinds
of fields and their data types. This can be very useful in an
interactive session.

Each field can have its own detailed documentation, too.

>>> moose.doc('Compartment.Rm')





Note that you need to put the class-name followed by dot followed by
field-name within quotes. Otherwise, moose.doc will receive the
field value as parameter and get confused.

Alternatively, if you want to see a full list of classes, functions and their fields, you can browse through the following pages. This is especially helpful when going through snippets.


	Index


	Module Index





Creating objects and traversing the object hierarchy

Different types of biological entities like neurons, enzymes, etc are
represented by classes and individual instances of those types are
objects of those classes. Objects are the building-blocks of models in
MOOSE. We call MOOSE objects element and use object and element
interchangeably in the context of MOOSE. Elements are conceptually laid
out in a tree-like hierarchical structure. If you are familiar with file
system hierarchies in common operating systems, this should be simple.

At the top of the object hierarchy sits the Shell, equivalent to the
root directory in UNIX-based systems and represented by the path /.
You can list the existing objects under / using the le function.

>>> moose.le()
Elements under /
/Msgs
/clock
/classes
/postmaster





Msgs, clock and classes are predefined objects in MOOSE. And
each object can contain other objects inside them. You can see them by
passing the path of the parent object to le

>>> moose.le('/Msgs')
Elements under /Msgs[0]
/Msgs[0]/singleMsg
/Msgs[0]/oneToOneMsg
/Msgs[0]/oneToAllMsg
/Msgs[0]/diagonalMsg
/Msgs[0]/sparseMsg





Now let us create some objects of our own. This can be done by invoking
MOOSE class constructors (just like regular Python classes).

>>> model = moose.Neutral('/model')





The above creates a Neutral object named model. Neutral is
the most basic class in MOOSE. A Neutral element can act as a
container for other elements. We can create something under model

>>> soma = moose.Compartment('/model/soma')





Every element has a unique path. This is a concatenation of the names of
all the objects one has to traverse starting with the root to reach that
element.

>>> print soma.path
/model/soma





The name of the element can be printed, too.

>>> print soma.name
soma





The Compartment elements model small sections of a neuron. Some
basic experiments can be carried out using a single compartment. Let us
create another object to act on the soma. This will be a step
current generator to inject a current pulse into the soma.

>>> pulse = moose.PulseGen('/model/pulse')





You can use le at any point to see what is there

>>> moose.le('/model')
Elements under /model
/model/soma
/model/pulse





And finally, we can create a Table to record the time series of the
soma’s membrane potential. It is good practice to organize the data
separately from the model. So we do it as below

>>> data = moose.Neutral('/data')
>>> vmtab = moose.Table('/data/soma_Vm')





Now that we have the essential elements for a small model, we can go on
to set the properties of this model and the experimental protocol.






Setting the properties of elements: accessing fields

Elements have several kinds of fields. The simplest ones are the
value fields. These can be accessed like ordinary Python members.
You can list the available value fields using getFieldNames
function

>>> soma.getFieldNames('valueFinfo')





Here valueFinfo is the type name for value fields. Finfo is
short form of field information. For each type of field there is a
name ending with -Finfo. The above will display the following
list

 ('this',
'name',
'me',
'parent',
'children',
'path',
'class',
'linearSize',
'objectDimensions',
'lastDimension',
'localNumField',
'pathIndices',
'msgOut',
'msgIn',
'Vm',
'Cm',
'Em',
'Im',
'inject',
'initVm',
'Rm',
'Ra',
'diameter',
'length',
'x0',
'y0',
'z0',
'x',
'y',
'z')





Some of these fields are for internal or advanced use, some give access
to the physical properties of the biological entity we are trying to
model. Now we are interested in Cm, Rm, Em and initVm.
In the most basic form, a neuronal compartment acts like a parallel
RC circuit with a battery attached. Here R and C are
resistor and capacitor connected in parallel, and the battery with
voltage Em is in series with the resistor, as shown below:


[image: **Passive neuronal compartment**]
Passive neuronal compartment



The fields are populated with some defaults.

>>> print soma.Cm, soma.Rm, soma.Vm, soma.Em, soma.initVm
1.0 1.0 -0.06 -0.06 -0.06





You can set the Cm and Rm fields to something realistic using
simple assignment (we follow SI unit) 2.

>>> soma.Cm = 1e-9
>>> soma.Rm = 1e7
>>> soma.initVm = -0.07





Instead of writing print statements for each field, you could use the
utility function showfield to see that the changes took effect

>>> moose.showfield(soma)
[ /soma[0] ]
diameter         = 0.0
Ra               = 1.0
y0               = 0.0
Rm               = 10000000.0
numData          = 1
inject           = 0.0
initVm           = -0.07
Em               = -0.06
y                = 0.0
numField         = 1
path             = /soma[0]
dt               = 5e-05
tick             = 4
z0               = 0.0
name             = soma
Cm               = 1e-09
x0               = 0.0
Vm               = -0.06
className        = Compartment
length           = 0.0
Im               = 0.0
x                = 0.0
z                = 0.0





Now we can setup the current pulse to be delivered to the soma

>>> pulse.delay[0] = 50e-3
>>> pulse.width[0] = 100e-3
>>> pulse.level[0] = 1e-9
>>> pulse.delay[1] = 1e9





This tells the pulse generator to create a 100 ms long pulse 50 ms after
the start of the simulation. The amplitude of the pulse is set to 1 nA.
We set the delay for the next pulse to a very large value (larger than
the total simulation time) so that the stimulation stops after the first
pulse. Had we set pulse.delay = 0 , it would have generated a pulse
train at 50 ms intervals.




Putting them together: setting up connections

In order for the elements to interact during simulation, we need to
connect them via messages. Elements are connected to each other using
special source and destination fields. These types are named
srcFinfo and destFinfo. You can query the available source and
destination fields on an element using getFieldNames as before. This
time, let us do it another way: by the class name

>>> moose.getFieldNames('PulseGen', 'srcFinfo')
('childMsg', 'output')





This form has the advantage that you can get information about a class
without creating elements of that class.

Here childMsg is a source field that is used by the MOOSE internals
to connect child elements to parent elements. The second one is of our
interest. Check out the built-in documentation here

>>> moose.doc('PulseGen.output')
PulseGen.output: double - source field
Current output level.





so this is the output of the pulse generator and this must be injected
into the soma to stimulate it. But where in the soma can we send
it? Again, MOOSE has some introspection built in.

>>> soma.getFieldNames('destFinfo')
('parentMsg',
 'setThis',
 'getThis',
   ...
 'setZ',
 'getZ',
 'injectMsg',
 'randInject',
 'cable',
 'process',
 'reinit',
 'initProc',
 'initReinit',
 'handleChannel',
 'handleRaxial',
 'handleAxial')





Now that is a long list. But much of it are fields for internal or
special use. Anything that starts with get or set are internal
destFinfo used for accessing value fields (we shall use one of those
when setting up data recording). Among the rest injectMsg seems to
be the most likely candidate. Use the connect function to connect
the pulse generator output to the soma input

>>> m = moose.connect(pulse, 'output', soma, 'injectMsg')





connect(source, source_field, dest, dest_field) creates a
message from source element’s source_field field to dest
element’s dest_field field and returns that message. Messages are
also elements. You can print them to see their identity

>>> print m
<moose.SingleMsg: id=5, dataId=733, path=/Msgs/singleMsg[733]>





You can print any element as above and the string representation will
show you the class, two numbers(id and dataId) uniquely
identifying it among all elements, and its path. You can get some more
information about a message

>>> print m.e1.path, m.e2.path, m.srcFieldsOnE1, m.destFieldsOnE2
/model/pulse /model/soma ('output',) ('injectMsg',)





will confirm what you already know.

A message element has fields e1 and e2 referring to the elements
it connects. For single one-directional messages these are source and
destination elements, which are pulse and soma respectively. The
next two items are lists of the field names which are connected by this
message.

You could also check which elements are connected to a particular field

>>> print soma.neighbors['injectMsg']
[<moose.vec: class=PulseGen, id=729,path=/model/pulse>]





Notice that the list contains something called vec. We discuss this
later. Also neighbors is a new kind of
field: lookupFinfo which behaves like a dictionary. Next we connect
the table to the soma to retrieve its membrane potential Vm. This is
where all those destFinfo starting with get or set come in
use. For each value field X, there is a destFinfo get{X} to
retrieve the value at simulation time. This is used by the table to
record the values Vm takes.

>>> moose.connect(vmtab, 'requestOut', soma, 'getVm')
<moose.SingleMsg: id=5, dataIndex=0, path=/Msgs[0]/singleMsg[0]>





This finishes our model and recording setup. You might be wondering
about the source-destination relationship above. It is natural to think
that soma is the source of Vm values which should be sent to
vmtab. But here requestOut is a srcFinfo acting like a
reply card. This mode of obtaining data is called pull mode. 3

You can skip the next section on fine control of the timing of updates
and read Running the simulation.




Scheduling

With the model all set up, we have to schedule the
simulation. Different components in a model may have different rates
of update. For example, the dynamics of electrical components require
the update intervals to be of the order 0.01 ms whereas chemical
components can be as slow as 1 s. Also, the results may depend on the
sequence of the updates of different components. These issues are
addressed in MOOSE using a clock-based update scheme. Each model
component is scheduled on a clock tick (think of multiple hands of a
clock ticking at different intervals and the object being updated at
each tick of the corresponding hand). The scheduling also guarantees
the correct sequencing of operations. For example, your Table objects
should always be scheduled after the computations that they are
recording, otherwise they will miss the outcome of the latest calculation.

MOOSE has a central clock element (/clock) to manage
time. Clock has a set of Tick elements under it that take care of
advancing the state of each element with time as the simulation
progresses. Every element to be included in a simulation must be
assigned a tick. Each tick can have a different ticking interval
(dt) that allows different elements to be updated at different
rates.

By default, every object is assigned a clock tick with reasonable default
timesteps as soon it is created:

Class type                      tick    dt
Electrical computations:        0-7     50 microseconds
electrical compartments,
V and ligand-gated ion channels,
Calcium conc and Nernst,
stimulus generators and tables,
HSolve.

Table (to plot elec. signals)   8       100 microseconds

Diffusion solver                10      0.01 seconds
Chemical computations:          11-17   0.1 seconds
Pool, Reac, Enz, MMEnz,
Func, Function,
Gsolve, Ksolve,
Stats (to do stats on outputs)

Table2 (to plot chem. signals)  18      1 second

HDF5DataWriter                  30      1 second
Postmaster (for parallel        31      0.01 seconds
computations)





There are 32 available clock ticks. Numbers 20 to 29 are
unassigned so you can use them for whatever purpose you like.

If you want fine control over the scheduling, there are three things
you can do.



	Alter the ‘tick’ field on the object


	Alter the dt associated with a given tick, using the
moose.setClock( tick, newdt) command


	Go through a wildcard path of objects reassigning there clock ticks,
using moose.useClock( path, newtick, function).







Here we discuss these in more detail.

Altering the ‘tick’ field

Every object knows which tick and dt it uses:

>>> a = moose.Pool( '/a' )
>>> print a.tick, a.dt
13 0.1





The tick field on every object can be changed, and the object will
adopt whatever clock dt is used for that tick. The dt field is
readonly, because changing it would have side-effects on every object
associated with the current tick.

Ticks -1 and -2 are special: They both tell the object that it is
disabled (not scheduled for any operations). An object with a
tick of -1 will be left alone entirely. A tick of -2 is used in
solvers to indicate that should the solver be removed, the object will
revert to its default tick.

Altering the dt associated with a given tick

We initialize the ticks and set their dt values using the
setClock function.

>>> moose.setClock(0, 0.025e-3)
>>> moose.setClock(1, 0.025e-3)
>>> moose.setClock(2, 0.25e-3)





This will initialize tick #0 and tick #1 with dt = 25 Î¼s and tick #2
with dt = 250 Î¼s. Thus all the elements scheduled on ticks #0 and 1
will be updated every 25 Î¼s and those on tick #2 every 250 Î¼s. We use
the faster clocks for the model components where finer timescale is
required for numerical accuracy and the slower clock to sample the
values of Vm.

Note that if you alter the dt associated with a given tick, this will
affect the update time for all the objects using that clock tick. If
you’re unsure that you want to do this, use one of the vacant ticks.

Assigning clock ticks to all objects in a wildcard path

To assign tick #2 to the table for recording Vm, we pass its
whole path to the useClock function.

>>> moose.useClock(2, '/data/soma_Vm', 'process')





Read this as “use tick # 2 on the element at path /data/soma_Vm to
call its process method at every step”. Every class that is supposed
to update its state or take some action during simulation implements a
process method. And in most cases that is the method we want the
ticks to call at every time step. A less common method is init,
which is implemented in some classes to interleave actions or updates
that must be executed in a specific order 4. The Compartment
class is one such case where a neuronal compartment has to know the
Vm of its neighboring compartments before it can calculate its
Vm for the next step. This is done with:

>>> moose.useClock(0, soma.path, 'init')





Here we used the path field instead of writing the path explicitly.

Next we assign tick #1 to process method of everything under /model.

>>> moose.useClock(1, '/model/##', 'process')





Here the second argument is an example of wild-card path. The ##
matches everything under the path preceding it at any depth. Thus if we
had some other objects under /model/soma, process method of
those would also have been scheduled on tick #1. This is very useful for
complex models where it is tedious to scheduled each element
individually. In this case we could have used /model/# as well for
the path. This is a single level wild-card which matches only the
children of /model but does not go farther down in the hierarchy.




Running the simulation

Once the model is all set up, we can put the model to its
initial state using

>>> moose.reinit()





You may remember that we had changed initVm from -0.06 to -0.07.
The reinit call we initialize Vm to that value. You can verify that

>>> print soma.Vm
-0.07





Finally, we run the simulation for 300 ms

>>> moose.start(300e-3)





The data will be recorded by the soma_vm table, which is referenced
by the variable vmtab. The Table class provides a numpy array
interface to its content. The field is vector. So you can easily plot
the membrane potential using the matplotlib [http://matplotlib.org/]
library.

>>> import pylab
>>> t = pylab.linspace(0, 300e-3, len(vmtab.vector))
>>> pylab.plot(t, vmtab.vector)
>>> pylab.show()





The first line imports the pylab submodule from matplotlib. This useful
for interactive plotting. The second line creates the time points to
match our simulation time and length of the recorded data. The third
line plots the Vm and the fourth line makes it visible. Does the
plot match your expectation?




Some more details


vec, melement and element

MOOSE elements are instances of the class melement. Compartment,
PulseGen and other MOOSE classes are derived classes of
melement. All melement instances are contained in array-like
structures called vec. Each vec object has a numerical
id_ field uniquely identifying it. An vec can have one or
more elements. You can create an array of elements

>>> comp_array = moose.vec('/model/comp', n=3, dtype='Compartment')





This tells MOOSE to create an vec of 3 Compartment elements
with path /model/comp. For vec objects with multiple
elements, the index in the vec is part of the element path.

>>> print comp_array.path, type(comp_array)





shows that comp_array is an instance of vec class. You can
loop through the elements in an vec like a Python list

>>> for comp in comp_array:
...    print comp.path, type(comp)
...





shows

/model[0]/comp[0] <type 'moose.Compartment'>
/model[0]/comp[1] <type 'moose.Compartment'>
/model[0]/comp[2] <type 'moose.Compartment'>





Thus elements are instances of class melement. All elements in an
vec share the id_ of the vec which can retrieved by
melement.getId().

A frequent use case is that after loading a model from a file one knows
the paths of various model components but does not know the appropriate
class name for them. For this scenario there is a function called
element which converts (“casts” in programming jargon) a path or any
moose object to its proper MOOSE class. You can create additional
references to soma in the example this way

x = moose.element('/model/soma')





Any MOOSE class can be extended in Python. But any additional attributes
added in Python are invisible to MOOSE. So those can be used for
functionalities at the Python level only. You can see
moose-examples/squid/squid.py for an example.




Finfos

The following kinds of Finfo are accessible in Python


	``valueFinfo`` : simple values. For each readable valueFinfo
XYZ there is a destFinfo getXYZ that can be used for
reading the value at run time. If XYZ is writable then there will
also be destFinfo to set it: setXYZ. Example:
Compartment.Rm


	``lookupFinfo`` : lookup tables. These fields act like Python
dictionaries but iteration is not supported. Example:
Neutral.neighbors.


	``srcFinfo`` : source of a message. Example:
PulseGen.output.


	``destFinfo`` : destination of a message. Example:
Compartment.injectMsg. Apart from being used in setting up
messages, these are accessible as functions from Python.
HHGate.setupAlpha is an example.


	``sharedFinfo`` : a composition of source and destination fields.
Example: Compartment.channel.









Moving on

Now you know the basics of pymoose and how to access the help
system. You can figure out how to do specific things by looking at the
‘cookbook`.  In addition, the moose-examples/snippets directory
in your MOOSE installation has small executable python scripts that
show usage of specific classes or functionalities. Beyond that you can
browse the code in the moose-examples directory to see some more complex
models.

MOOSE is backward compatible with GENESIS and most GENESIS classes have
been reimplemented in MOOSE. There is slight change in naming (MOOSE
uses CamelCase), and setting up messages are different. But GENESIS
documentation [http://www.genesis-sim.org/GENESIS/Hyperdoc/Manual.html]
is still a good source for documentation on classes that have been
ported from GENESIS.

If the built-in MOOSE classes do not satisfy your needs entirely, you
are welcome to add new classes to MOOSE. The API documentation will
help you get started.


	1

	To list the classes only, use moose.le('/classes')



	2

	MOOSE is unit agnostic and things should work fine as long as you use
values all converted to a consistent unit system.



	3

	This apparently convoluted implementation is for performance reason.
Can you figure out why? Hint: the table is driven by a slower clock
than the compartment.



	4

	In principle any function available in a MOOSE class can be executed
periodically this way as long as that class exposes the function for
scheduling following the MOOSE API. So you have to consult the class’
documentation for any nonstandard methods that can be scheduled this
way.











          

      

      

    

  

    
      
          
            
  
Demonstration of basic functionalities


Load and Run a Model




Start, Stop, and setting clocks




Run Python from MOOSE







          

      

      

    

  

    
      
          
            
  
MOOSE Classes


Messages


One-to-one message




Show the message




Single Message Cross






Time


Clocks




Generating Time Data Table






Vectors




Data Entries




Interpolation


1-dimentional Interpolation




2-dimentional interpolation






Function




SymCompartment




Tables




Data Types


HDF DataType




NSDF DataType






Threading




PyMoose




Mathematics with MOOSE




Computing an arbitrary function


[image: Outputs of Function object calculating z = c0 * exp(c1 * x) * cos(y)]





Differential Equation Solving




Harmonic Oscillatory Function




Lotka-Voltera Model




Vary Concentration with mathematical function







          

      

      

    

  

    
      
          
            
  
Cook Book

The MOOSE Cookbook contains recipes showing you, how to do specific tasks in MOOSE.



	Single Neuron Electrical Aspects (BioPhysics)
	Neuron Modeling

	Neuronal simulations in MOOSEGUI

	Load and Run simple models

	Simple Examples





	Chemical Aspects
	Interface for chemical kinetic models in MOOSEGUI

	Load - Run - Save models

	Simple Examples

	Tutorials





	Networking
	Simple Examples

	Tutorials





	MultiScale Modeling
	Simple Examples













          

      

      

    

  

    
      
          
            
  
Single Neuron Electrical Aspects (BioPhysics)



	Neuron Modeling
	Modeling details





	Neuronal simulations in MOOSEGUI
	moose-examples





	Load and Run simple models
	Single Cubicle Compartmental Neuron

	Single Neuron Model

	Load neuron model from GENESIS

	Integrate-and-fire models





	Simple Examples
	Create a Leaky Neuron

	Create a Leaky Compartment

	Voltage Clamping

	Generate Pulse

	Synapse

	Message transmission via synapse

	Gap Junction

	Insert Spine heads













          

      

      

    

  

    
      
          
            
  
Neuron Modeling

Neurons are modelled as equivalent electrical circuits. The morphology
of a neuron can be broken into isopotential compartments connected by
axial resistances Ra denoting the cytoplasmic
resistance. In each compartment, the neuronal membrane is represented as
a capacitance Cm with a shunt leak resistance
Rm. Electrochemical gradient (due to ion pumps)
across the leaky membrane causes a voltage drive Em,
that hyperpolarizes the inside of the cell membrane compared to the
outside.

Each voltage dependent ion channel, present on the membrane, is modelled
as a voltage dependent conductance Gk with gating
kinetics, in series with an electrochemical voltage drive (battery)
Ek, across the membrane capacitance
Cm, as in the figure below.




[image: **Equivalent circuit of neuronal compartments**]
Equivalent circuit of neuronal compartments





Neurons fire action potentials / spikes (sharp rise and fall of membrane
potential Vm) due to voltage dependent channels.
These result in opening of excitatory / inhibitory synaptic channels
(conductances with batteries, similar to voltage gated channels) on
other connected neurons in the network.

MOOSE can handle large networks of detailed neurons, each with
complicated channel dynamics. Further, MOOSE can integrate chemical
signalling with electrical activity. Presently, creating and simulating
these requires PyMOOSE scripting, but these will be incorporated into
the GUI in the future.

To understand channel kinetics and neuronal action potentials, run the
Squid Axon demo installed along with MOOSEGUI and consult its
help/tutorial.

Read more about compartmental modelling in the first few chapters of the
Book of Genesis [http://www.genesis-sim.org/GENESIS/iBoG/iBoGpdf/index.html].

Models can be defined in NeuroML [http://www.neuroml.org], an XML
format which is mostly supported across simulators. Channels, neuronal
morphology (compartments), and networks can be specified using various
levels of NeuroML, namely ChannelML, MorphML and NetworkML. Importing of
cell models in the GENESIS [http://www.genesis-sim.org/GENESIS]
.p format is supported for backward compatibitility.


Modeling details

Some salient properties of neuronal building blocks in MOOSE are
described below. Variables that are updated at every simulation time
step are listed dynamically. Rest are parameters.


	Compartment
When you select a compartment, you can view and edit its properties
in the right pane. Vm and Imare plot-able.


	
	Vm

	membrane potential (across Cm) in Volts. It is a
dynamical variable.







	
	Cm

	membrane capacitance in Farads.







	
	Em

	membrane leak potential in Volts due
to the electrochemical gradient setup by ion pumps.







	
	Im

	current in Amperes across the membrane via leak resistance Rm.







	
	inject

	current in Amperes injected externally into the compartment.







	
	initVm

	initial Vm in Volts.







	
	Rm

	membrane leak resistance in Ohms due to leaky channels.







	
	diameter

	diameter of the compartment in metres.







	
	length

	length of the compartment in metres.











	HHChannel
Hodgkin-Huxley channel with voltage dependent dynamical gates.


	
	Gbar

	peak channel conductance in Siemens.







	
	Ek

	reversal potential of the channel, due to electrochemical
gradient of the ion(s) it allows.







	
	Gk

	conductance of the channel in Siemens.
Gk(t) = Gbar × X(t)Xpower ×
Y(t)Ypower × Z(t)Zpower







	
	Ik

	
	current through the channel into the neuron in Amperes.

	Ik(t) = Gk(t) ×
(Ek-Vm(t))











	
	X, Y, Z

	gating variables (range 0.0 to 1.0) that may turn on or off as
voltage increases with different time constants.


dX(t)/dt = Xinf/τ - X(t)/τ

Here, Xinf and τ are typically
sigmoidal/linear/linear-sigmoidal functions of membrane
potential Vm, which are described in a ChannelML
file and presently not editable from MOOSEGUI. Thus, a gate
may open (Xinf(Vm) → 1) or close (Xinf(Vm) → 0) on increasing Vm, with time constant τ(Vm).










	
	Xpower, Ypower, Zpower

	powers to which gates are raised in the Gk(t)
formula above.











	HHChannel2D
The Hodgkin-Huxley channel2D can have the usual voltage dependent
dynamical gates, and also gates that depend on voltage and an
ionic concentration, as for say Ca-dependent K conductance. It has
the properties of HHChannel above, and a few more, similar to
in the GENESIS tab2Dchannel
reference [http://www.genesis-sim.org/GENESIS/Hyperdoc/Manual-26.html#ss26.61].


	CaConc
This is a pool of Ca ions in each compartment, in a shell volume
under the cell membrane. The dynamical Ca concentration increases
when Ca channels open, and decays back to resting with a specified
time constant τ. Its concentration controls Ca-dependent K channels,
etc.


	
	Ca

	Ca concentration in the pool in units mM ( i.e., mol/m3).


d[Ca2+]/dt = B × ICa -
[Ca2+]/τ










	
	CaBasal/Ca_base

	Base Ca concentration to which the Ca decays







	
	tau

	time constant with which the Ca concentration decays to the base Ca level.







	
	B

	constant in the [Ca2+] equation above.







	
	thick

	thickness of the Ca shell within the cell membrane which is
used to calculate B (see Chapter 19 of Book of GENESIS [http://www.genesis-sim.org/GENESIS/iBoG/iBoGpdf/index.html].)



















          

      

      

    

  

    
      
          
            
  
Neuronal simulations in MOOSEGUI

Neuronal models in various formats can be loaded and simulated in the
MOOSE Graphical User Interface. The GUI displays the neurons in 3D,
and allows visual selection and editing of neuronal properties. Plotting
and visualization of activity proceed concurrently with the simulation.
Support for creating and editing channels, morphology, and networks is
planned for the future. MOOSEGUI uses SI units throughout.


moose-examples


	Cerebellar granule cell

File -> Load ->
~/moose/moose-examples/neuroml/GranuleCell/GranuleCell.net.xml

This is a single compartment Cerebellar granule cell with a variety
of channels Maex, R. and De Schutter, E.,
1997 [http://www.tnb.ua.ac.be/models/network.shtml] (exported from
http://www.neuroconstruct.org/). Click on its soma, and See
children for its list of channels. Vary the Gbar of these
channels to obtain regular firing, adapting and bursty behaviour (may
need to increase tau of the Ca pool).



	Pyloric rhythm generator in the stomatogastric ganglion of lobster

File -> Load ->
~/moose/moose-examples/neuroml/pyloric/Generated.net.xml



	Purkinje cell

File -> Load ->
~/moose/moose-examples/neuroml/PurkinjeCell/Purkinje.net.xml

This is a purely passive cell, but with extensive morphology [De
Schutter, E. and Bower, J. M., 1994] (exported from
http://www.neuroconstruct.org/). The channel specifications are in an
obsolete ChannelML format which MOOSE does not support.



	Olfactory bulb subnetwork

File -> Load ->
~/moose/moose-examples/neuroml/OlfactoryBulb/numgloms2_seed100.0_decimated.xml

This is a pruned and decimated version of a detailed network model
of the Olfactory bulb [Gilra A. and Bhalla U., in preparation]
without channels and synaptic connections. We hope to post the
ChannelML specifications of the channels and synapses soon.



	All channels cell

File -> Load ->
~/moose/moose-examples/neuroml/allChannelsCell/allChannelsCell.net.xml

This is the Cerebellar granule cell as above, but with loads of
channels from various cell types (exported from
http://www.neuroconstruct.org/). Play around with the channel
properties to see what they do. You can also edit the ChannelML files
in ~/moose/moose-examples/neuroml/allChannelsCell/cells_channels/ to
experiment further.



	NeuroML python scripts
In directory ~/moose/moose-examples/neuroml/GranuleCell, you can run
python FvsI_Granule98.py which plots firing rate vs injected
current for the granule cell. Consult this python script to see how
to read in a NeuroML model and to set up simulations. There are ample
snippets in ~/moose/moose-examples/snippets too.










          

      

      

    

  

    
      
          
            
  
Load and Run simple models



How to run these examples
Each of the following examples can be run by clicking on the green source button
on the right side of each example, and running from within a ``.py`` python file
on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in the main
moose directory. They can be found under

    (...)/moose/moose-examples/snippets

They can be run by typing

    $ python filename.py

in your command line, where filename.py is the python file you want to run.

All of the following examples show one or more methods within each python file.
For example, in the ``cubeMeshSigNeur`` section, there are two blue tabs
describing the ``cubeMeshSigNeur.createSquid()`` and ``cubeMeshSigNeur.main()``
methods.

The filename is the bit that comes before the ``.`` in the blue boxes, with
``.py`` added at the end of it. In this case, the file name would be
``cubeMeshSigNeur.py``.













Single Cubicle Compartmental Neuron




Single Neuron Model




Load neuron model from GENESIS




Integrate-and-fire models







          

      

      

    

  

    
      
          
            
  
Simple Examples



How to run these examples
Each of the following examples can be run by clicking on the green source button
on the right side of each example, and running from within a ``.py`` python file
on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in the main
moose directory. They can be found under

    (...)/moose/moose-examples/snippets

They can be run by typing

    $ python filename.py

in your command line, where filename.py is the python file you want to run.

All of the following examples show one or more methods within each python file.
For example, in the ``cubeMeshSigNeur`` section, there are two blue tabs
describing the ``cubeMeshSigNeur.createSquid()`` and ``cubeMeshSigNeur.main()``
methods.

The filename is the bit that comes before the ``.`` in the blue boxes, with
``.py`` added at the end of it. In this case, the file name would be
``cubeMeshSigNeur.py``.













Create a Leaky Neuron




Create a Leaky Compartment




Voltage Clamping




Generate Pulse




Synapse




Message transmission via synapse




Gap Junction




Insert Spine heads







          

      

      

    

  

    
      
          
            
  
Chemical Aspects



	Interface for chemical kinetic models in MOOSEGUI
	Introduction

	**TODO** What are chemical kinetic models?

	Levels of model

	Numerical methods

	Using Kinetikit 12

	Model layout and icons

	Model operations

	Model building





	Load - Run - Save models
	Load a Kinetic Model

	Load an SBML Model

	Load a CSpace Model

	Save a model into SBML format

	Save a model





	Simple Examples
	Set-up a kinetic solver and model

	Building a chemical Model from Parts

	Cross-Compartment Reaction Systems

	Tweaking Parameters

	Models’ Demonstration

	Reaction Diffusion Models

	A Turing Model

	Reaction Diffusion in Neurons

	Manipulating Chemical Models

	Transport in branching dendritic tree





	Tutorials
	Finding Steady State (CSpace)

	Define a kinetic model using the scripting













          

      

      

    

  

    
      
          
            
  
Interface for chemical kinetic models in MOOSEGUI

Upinder Bhalla, Harsha Rani

Nov 8 2016.




	Introduction


	**TODO** What are chemical kinetic
models?


	Levels of model


	Numerical methods






	Using Kinetikit 12


	Overview


	Model layout and icons


	Compartment


	Pool


	Buffered pools


	Reaction


	Mass-action enzymes


	Michaelis-Menten Enzymes


	Summation






	Model operations


	Model Building









Introduction

Kinetikit 12 is a graphical interface for doing chemical kinetic modeling in MOOSE. It is derived in part from Kinetikit, which was the
graphical interface used in GENESIS for similar models. Kinetikit, also known as kkit, was at version 11 with GENESIS. Here we start with
Kinetikit 12.




**TODO** What are chemical kinetic models?

Much of neuronal computation occurs through chemical signaling. For
example, many forms of synaptic plasticity begin with calcium influx
into the synapse, followed by calcium binding to calmodulin, and then
calmodulin activation of numerous enzymes. These events can be
represented in chemical terms:


4 Ca2++ CaM <===> Ca4.CaM




Such chemical equations can be modeled through standard Ordinary
Differential Equations, if we ignore space:

d[Ca]/dt = âˆ’4Kf âˆ— [Ca]4 âˆ— [CaM] + 4Kb âˆ— [Ca4.CaM] d[CaM]/dt = âˆ’Kf âˆ— [Ca]4 âˆ— [CaM] + Kb âˆ— [Ca4.CaM] d[Ca4.CaM]/dt = Kf âˆ— [Ca]4 âˆ— [CaM] âˆ’ Kb âˆ— [Ca4.CaM]





MOOSE models these chemical systems. This help document describes how to do such modelling using the graphical interface, Kinetikit 12.




Levels of model

Chemical kinetic models can be simple well-stirred (or point) models, or
they could have multiple interacting compartments, or they could include
space explicitly using reaction-diffusion. In addition such models could
be solved either deterministically, or using a stochastic formulation.
At present Kinetikit handles compartmental models but does not compute
diffusion within the compartments, though MOOSE itself can do this at
the script level. Kkit12 will do deterministic as well as stochastic
chemical calculations.




Numerical methods


	Deterministic: Adaptive timestep 5th order Runge-Kutta-Fehlberg from the GSL (GNU Scientific Library).


	Stochastic: Optimized Gillespie Stochastic Systems Algorithm, custom implementation.







Using Kinetikit 12


Overview


	Load models using ‘File -> Load model’. A reaction schematic for the chemical system appears in the ‘Editor view’ tab.


	From ‘Editor view’ tab






	View parameters by clicking on icons, and looking at entries in ‘Properties’ table to the right.


	Edit parameters by changing their values in the ‘Properties’ table.








	From ‘Run View’






	Pools can be plotted by clicking on their icons and dragging the icons onto the plot Window. Presently only concentration v/s time is plottable.


	Select simulation, diffusion dt’s along updateInterval for plot and Gui with numerical method using options under ‘Preferences’ button in simulation control.


	Run model using ‘Run’ button.


	Save plots image using the icons at the top of the ‘Plot Window’ or right click on plot to Export to csv.







Most of these operations are detailed in other sections, and are shared
with other aspects of the MOOSE simulation interface. Here we focus on
the Kinetikit-specific items.






Model layout and icons

When you are in the ‘Editor View’ tab you will see a collection of
icons, arrows, and grey boxes surrounding these. This is a schematic of
the reaction scheme being modeled. You can view and change parameters,
and change the layout of the model.


[image: ]


Resizing the model layout and icons:


	Zoom: Comma and period keys. Alternatively, the mouse scroll wheel or vertical scroll line on the track pad will cause the display to zoom in and out.


	Pan: The arrow keys move the display left, right, up, and down.


	Entire Model View: Pressing the ‘a’ key will fit the entire model into the entire field of view.


	Resize Icons: Angle bracket keys, that is, ‘<’ and ‘>’ or ‘+’ and ‘-‘. This resizes the icons while leaving their positions on the screen layout more or less the same.


	Original Model View: Pressing the ‘A’ key (capital ‘A’) will revert to the original model view including the original icon scaling.





Compartment

The compartment in moose is usually a contiguous domain in which a
certain set of chemical reactions and molecular species occur. The
definition is very closely related to that of a cell-biological
compartment. Examples include the extracellular space, the cell
membrane, the cytosol, and the nucleus. Compartments can be nested, but
of course you cannot put a bigger compartment into a smaller one.


	Icon: Grey boundary around a set of reactions.


	Moving Compartments: Click and drag on the boundary.


	Resizing Compartment boundary: Happens automatically when contents are repositioned, so that the boundary just contains contents.


	Compartment editable parameters:






	‘name’: The name of the compartment.


	‘size’: This is the volume, surface area or length of the compartment, depending on its type.








	Compartment fixed parameters:






	‘numDimensions’: This specifies whether the compartment is a volume, a 2-D surface, or if it is just being represented as a length.










Pool

This is the set of molecules of a given species within a compartment.
Different chemical states of the same molecule are in different pools.


	Icon: [image: image0] Colored rectangle with pool name in it.


	Moving pools: Click and drag.


	Pool editable parameters:






	name: Name of the pool


	n: Number of molecules in the pool


	nInit: Initial number of molecules in the pool. ‘n’ gets set
to this value when the ‘reinit’ operation is done.


	conc: Concentration of the molecules in the pool.
conc = n * unit_scale_factor / (N_A * vol)


	concInit: Initial concentration of the molecules in the pool.
‘conc’ is set to this value when the ‘reinit’ operation is done.

concInit = nInit * unit_scale_factor / (N_A * vol)









	Pool fixed parameters






	size: Derived from the compartment that holds the pool.
Specifies volume, surface area or length of the holding
compartment.










Buffered pools

Some pools are set to a fixed ‘n’, that is number of molecules, and
therefore a fixed concentration, throughout a simulation. These are
buffered pools.


	Icon: [image: image1] Colored rectangle with pool name in it.


	Moving Buffered pools: Click and drag.


	Buffered Pool editable parameters






	name: Name of the pool


	nInit: Fixed number of molecules in the pool. ‘n’ gets set to
this value throughout the run.


	concInit: Fixed concentration of the molecules in the pool.
‘conc’ is set to this value throughout the run.

concInit = nInit * unit_scale_factor / (N_A * vol)









	Pool fixed parameters:






	n: Number of molecules in the pool. Derived from ‘nInit’.


	conc: Concentration of molecules in the pool. Derived from
‘concInit’.


	size: Derived from the compartment that holds the pool.
Specifies volume, surface area or length of the holding
compar’tment.










Reaction

These are conversion reactions between sets of pools. They are
reversible, but you can set either of the rates to zero to get
irreversibility. In the illustration below, ‘D’ and ‘A’ are
substrates, and ‘B’ is the product of the reaction. This is
indicated by the direction of the green arrow.


[image: ]



	Icon: [image: image2] Reversible reaction arrow.


	Moving Reactions: Click and drag.


	Reaction editable parameters:






	Name : Name of reaction


	Kf: ‘Forward rate’ of reaction, in
‘concentration/time’ units. This is the normal way to express and
manipulate the reaction rate.


	kf: Forward rate of reaction, in ‘number/time’
units. This is used internally for computations, but is
volume-dependent and should not be used to manipulate the reaction
rate unless you really know what you are doing.


	Kb: Backward rate’ of reaction, in
‘concentration/time’ units. This is the normal way to express and
manipulate the reaction rate.


	kb: Backward rate of reaction, in ‘number/time’
units. This is used internally for computations, but is
volume-dependent and should not be used to manipulate the reaction
rate unless you really know what you are doing.








	Reaction fixed parameters:






	numSubstrates: Number of substrates molecules.


	numProducts: Number of product molecules.










Mass-action enzymes

These are enzymes that model the chemical equation’s


E + S <===> E.S -> E + P




Note that the second reaction is irreversible. Note also that
mass-action enzymes include a pool to represent the ‘E.S’
(enzyme-substrate) complex. In the example below, the enzyme pool is
named ‘MassActionEnz’, the substrate is ‘C’, and the product is
‘E’. The direction of the enzyme reaction is indicated by the red
arrows.


[image: ]



	Icon: [image: image3] Colored ellipse atop a small square. The ellipse represents the enzyme. The small square represents ‘E.S’, the enzyme-substrate complex. The ellipse icon has the same color as the enzyme pool ‘E’. It is connected to the enzyme pool ‘E’ with a straight line of the same color.





The ellipse icon sits on a continuous, typically curved arrow in red,
from the substrate to the product.

A given enzyme pool can have any number of enzyme activities, since
the same enzyme might catalyze many reactions.





	Moving Enzymes: Click and drag on the ellipse.


	Enzyme editable parameters






	name : Name of enzyme.


	Km : Michaelis-Menten value for enzyme, in
‘concentration’ units.


	kcat : Production rate of enzyme, in ‘1/time’ units.
Equal to k3, the rate of the second, irreversible
reaction.


	k1 : Forward rate of the E+S reaction, in number and
‘1/time’ units. This is what is used in the internal calculations.


	k2 : Backward rate of the E+S reaction, in ‘1/time’ units.
Used in internal calculations.


	k3 : Forward rate of the E.S -> E + P reaction, in
‘1/time’ units. Equivalent to kcat. Used in internal
calculations.


	ratio : This is equal to k2/k3. Needed to
define the internal rates in terms of Km and
kcat. I usually use a value of 4.








	Enzyme-substrate-complex editable parameters: These are identica’l to those of any other pool.






	name: Name of the E.S complex. Defaults to **_cplx**.


	n: Number of molecules in the pool


	nInit: Initial number of molecules in the complex. ‘n’ gets set to this value when the ‘reinit’ operation is done.


	conc: Concentration of the molecules in the pool.

conc = n * unit_scale_factor / (N_A * vol)



	concInit: Initial concentration of the molecules in the pool.
‘conc’ is set to this value when the ‘reinit’ operation is done.
concI'nit = nInit * unit_scale_factor / (N_A * vol)








	Enzyme-substrate-complex fixed parameters:






	size: Derived from the compartment that holds the pool.
Specifies volume, surface area or length of the holding
compartment. Note that the Enzyme-substrate-complex is assumed to
be in the same compartment as the enzyme molecule.










Michaelis-Menten Enzymes

These are enzymes that obey the Michaelis-Menten equation

V = V_max * [S] / ( K_m + [S] ) = k_cat * [Etot] * [S] / ( K_m + [S] )
where
-  Vmax is the maximum rate of the enzyme
-  [Etot] is the total amount of the enzyme
-  Km is the Michaelis-Menten constant
-  S is the substrate.

Nominally these enzymes model the same chemical equation as the mass-action enzyme’:

E + S <===> E.S -> E + P

but they make the assumption that the E.S is in a quasi-steady-state
with E and S, and they also ignore sequestration of the enzyme
into the complex. So there is no representation of the E.S complex.
In the example below, the enzyme pool is named MM_Enz, the
substrate is E, and the product is P. The direction of the
enzyme reaction is indicated by the red arrows.


[image: ]



	Icon: [image: image4] Colored ellipse. The ellipse represents the enzyme
The ellipse icon has the same color as the enzyme ‘MM_Enz’. It
is connected to the enzyme pool ‘MM_Enz’ with a straight line of
the same color. The ellipse icon sits on a continuous, typically
curved arrow in red, from the substrate to the product. A given
enzyme pool can have any number of enzyme activities, since the same
enzyme might catalyze many reactions.


	Moving Enzymes: Click and drag.


	Enzyme editable parameters:


	name: Name of enzyme.


	Km: Michaelis-Menten value for enzyme, in ‘concentration’
units.


	kcat: Production rate of enzyme, in ‘1/time’ units. Equal to k3, the rate of the second, irreversible reaction.











Summation

Summation object can be used to add specified variable values. The
variables can be input from pool object.


	Icon: This is Î£ in the example image below. The input pools
‘A’ and ‘B’ connect to the Î£ with blue arrows. The
function ouput’s to BuffPool [image: image5]









Model operations


	Loading models: File -> Load Model -> select from dialog.
This operation makes the previously loaded model disable and loads newly selected models in ‘Model View’.


	New: File -> New -> Model name. This opens a empty widget for model building


	Saving models: File -> Save Model -> select from dialog.


	Changing numerical methods: Preference->Chemical tab item from Simulation Control. Currently supports:





	Runge Kutta: This is the Runge-Kutta-Fehlberg implementation from the GNU Scientific Library (GSL). It is a fifth order variable timestep explicit method. Works well for most reaction systems except if they have very stiff reactions.


	Gillespie: Optimized Gillespie stochastic systems algorithm, custom implementation. This uses variable timesteps internally. Note that it slows down with increasing numbers of molecules in each pool. It also slows down, but not so badly, if the number of reactions goes up.


	Exponential Euler:This methods computes the solution of partial and ordinary differential equations.







Model building


	The Edit Widget includes various menu options and model icons on
the top. Use the mouse buttton to click and drag icons from toolbar
to Edit Widget, two things will happen, icon will appear in the
editor widget and an object editor will pop up with lots of
parameters with respect to moose object.





[image: ]


Rules:

*   Compartment has to be created firstly(At present only single compartment model is allowed)
*   Enzyme should be dropped on a pool as parent
*   function should be dropped on buffPool for output





Note:

*   Drag in pool and reaction on to the editor widget, now one can set up a reaction.
*   Click on mooseObject one can find a little arrow on the top right corner of the object, drag from this little arrow to any object for connection. e.g pool to reaction and reaction to pool. Specific connection type gets specific colored arrow. e.g. Green color arrow for specifying connection between reactant and product for reaction.
*   Clicking on the object one can rearrange object for clean layout.
*   Second order reaction can also be done by repeating the connection over again
*   Each connection can be deleted and using rubberband selection each moose object can be deleted






	From run widget, pools are draggable to plot window for plotting.
(Currently conc is plotted as default field) Plots are
color-coded as per in model.





[image: ]



	Model can be run by clicking start button. One can stop button in
mid-stream and start up again without affectiong the calculations.
The reset button clears the simulation.










          

      

      

    

  

    
      
          
            
  
Load - Run - Save models



How to run these examples
Each of the following examples can be run by clicking on the green source button
on the right side of each example, and running from within a ``.py`` python file
on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in the main
moose directory. They can be found under

    (...)/moose/moose-examples/snippets

They can be run by typing

    $ python filename.py

in your command line, where filename.py is the python file you want to run.

All of the following examples show one or more methods within each python file.
For example, in the ``cubeMeshSigNeur`` section, there are two blue tabs
describing the ``cubeMeshSigNeur.createSquid()`` and ``cubeMeshSigNeur.main()``
methods.

The filename is the bit that comes before the ``.`` in the blue boxes, with
``.py`` added at the end of it. In this case, the file name would be
``cubeMeshSigNeur.py``.













Load a Kinetic Model




Load an SBML Model




Load a CSpace Model




Save a model into SBML format




Save a model







          

      

      

    

  

    
      
          
            
  
Simple Examples



How to run these examples
Each of the following examples can be run by clicking on the green source button
on the right side of each example, and running from within a ``.py`` python file
on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in the main
moose directory. They can be found under

    (...)/moose/moose-examples/snippets

They can be run by typing

    $ python filename.py

in your command line, where filename.py is the python file you want to run.

All of the following examples show one or more methods within each python file.
For example, in the ``cubeMeshSigNeur`` section, there are two blue tabs
describing the ``cubeMeshSigNeur.createSquid()`` and ``cubeMeshSigNeur.main()``
methods.

The filename is the bit that comes before the ``.`` in the blue boxes, with
``.py`` added at the end of it. In this case, the file name would be
``cubeMeshSigNeur.py``.













Set-up a kinetic solver and model


with Scripting




With something else






Building a chemical Model from Parts

Disclaimer: Avoid doing this for all but the very simplest models. This
is error-prone, tedious, and non-portable. For preference use one of the
standard model formats like SBML, which MOOSE and many other tools can
read and write.

Nevertheless, it is useful to see how these models are set up.
There are several tutorials and snippets that build the entire chemical
model system using the basic MOOSE calls. The sequence of steps is
typically:



	Create container (chemical compartment) for model. This is typically
a CubeMesh, a CylMesh, and if you really know what you are doing,
a NeuroMesh.


	Create the reaction components: pools of molecules moose.Pool;
reactions moose.Reac; and enzymes moose.Enz. Note that when
creating an enzyme, one must also create a molecule beneath it to
serve as the enzyme-substrate complex.  Other less-used
components include Michaelis-Menten enzymes moose.MMenz, input
tables, pulse generators and so on. These are illustrated in other
examples. All these reaction components should be child objects
of the compartment, since this defines what volume they will occupy.
Specifically , a pool or reaction object must be placed somewhere
below the compartment in the object tree for the volume to be
set correctly and for the solvers to know what to use.


	Assign parameters for the components.



	Compartments have a volume, and each subtype will have
quite elaborate options for partitioning the compartment
into voxels.


	Pool s have one key parameter, the initial
concentration concInit.


	Reac tions have two parameters: Kf and Kb.


	Enz ymes have two primary parameters kcat and Km.
That is enough for MMenz ymes. Regular Enz ymes have
an additional parameter k2 which by default is set to 4.0
times kcat, but you may also wish to explicitly assign it
if you know its value.









	Connect up the reaction system using moose messaging.


	Create and connect up input and output tables as needed.


	Create and connect up the solvers as needed. This has to be done
in a specific order. Examples are linked below, but briefly the
order is:


	Make the compartment and reaction system.


	Make the Ksolve or Gsolve.


	Make the Stoich.


	Assign stoich.compartment to the compartment


	Assign stoich.ksolve to either the Ksolve or Gsolve.


	Assign stoich.path to finally fill in the reaction system.











An example of manipulating the models is as following:

The recommended way to build a chemical model, of course, is to load it
in from a file format specific to such models. MOOSE understands
SBML, kkit.g (a legacy GENESIS format), and cspace
(a very compact format used in a large study of bistables from
Ramakrishnan and Bhalla, PLoS Comp. Biol 2008).

One key concept is that in MOOSE the components, messaging, and access
to model components is identical regardless of whether the model was
built from parts, or loaded in from a file. All that the file loaders do
is to use the file to automate the steps above. Thus the model components
and their fields are completely accessible from the script even if
the model has been loaded from a file.




Cross-Compartment Reaction Systems

Frequently reaction systems span cellular (chemical) compartments.
For example, a membrane-bound molecule may be phosphorylated by a
cytosolic kinase, using soluble ATP as one of the substrates. Here the
membrane and the cytsol are different chemical compartments.
MOOSE supports such reactions. The following snippets illustrate
cross-compartment chemistry. Note that the interpretation of the rates
of enzymes and reactions does depend on which compartment they reside in.




Tweaking Parameters


[image: Three oscillation patterns after tweaking model parameters.]





Models’ Demonstration


Oscillation Model




Bistability Models


MAPK feedback loop model




Simple minimal bistable model




Strongly bistable Model




Model of bidirectional synaptic plasticity

[showing bistable chemical switch]








Reaction Diffusion Models

The MOOSE design for reaction-diffusion is to specify one or
more cellular ‘compartments’, and embed reaction systems in each of them.

A ‘compartment’, in the context of reaction-diffusion, is used in the
cellular sense of a biochemically defined,
volume restricted subpart of a cell. Many but not all compartments
are bounded by a cell membrane, but biochemically the membrane itself
may form a compartment. Note that this interpretation differs from that
of a ‘compartment’ in detailed electrical models of neurons.

A reaction system can be loaded in from any of the supported MOOSE
formats, or built within Python from MOOSE parts.

The computations for such models are done by a set of objects:
Stoich, Ksolve and Dsolve. Respectively, these handle the model
reactions and stoichiometry matrix, the reaction computations for
each voxel, and the diffusion between voxels. The ‘Compartment’ specifies
how the model should be spatially discretized.

[Reaction-diffusion + transport in a tapering cylinder]


Neuronal Diffusion Reaction






A Turing Model




Reaction Diffusion in Neurons




Manipulating Chemical Models


Running with different numerical methods




Changing volumes




Feeding tabulated input to a model




Finding steady states




Making a dose-response curve


[image: Dose-response curve example for a bistable system.]







Transport in branching dendritic tree


[image: Pseudo-3-D rendition of branching neuron and the concs in it.]








          

      

      

    

  

    
      
          
            
  
Tutorials



How to run these examples
Each of the following examples can be run by clicking on the green source button
on the right side of each example, and running from within a ``.py`` python file
on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in the main
moose directory. They can be found under

    (...)/moose/moose-examples/snippets

They can be run by typing

    $ python filename.py

in your command line, where filename.py is the python file you want to run.

All of the following examples show one or more methods within each python file.
For example, in the ``cubeMeshSigNeur`` section, there are two blue tabs
describing the ``cubeMeshSigNeur.createSquid()`` and ``cubeMeshSigNeur.main()``
methods.

The filename is the bit that comes before the ``.`` in the blue boxes, with
``.py`` added at the end of it. In this case, the file name would be
``cubeMeshSigNeur.py``.













Finding Steady State (CSpace)




Define a kinetic model using the scripting







          

      

      

    

  

    
      
          
            
  
Networking



	Simple Examples
	Connecting two cells via a synapse

	Multi Compartmental Leaky Neurons

	Providing random input to a cell

	Plastic synapse

	Synapse Handler for Spikes

	Recurrent integrate-and-fire network

	Recurrent integrate-and-fire network with plasticity

	Demonstration Models

	Building Models





	Tutorials
	Network with Ca-based plasticity













          

      

      

    

  

    
      
          
            
  
Simple Examples



How to run these examples
Each of the following examples can be run by clicking on the green source button
on the right side of each example, and running from within a ``.py`` python file
on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in the main
moose directory. They can be found under

    (...)/moose/moose-examples/snippets

They can be run by typing

    $ python filename.py

in your command line, where filename.py is the python file you want to run.

All of the following examples show one or more methods within each python file.
For example, in the ``cubeMeshSigNeur`` section, there are two blue tabs
describing the ``cubeMeshSigNeur.createSquid()`` and ``cubeMeshSigNeur.main()``
methods.

The filename is the bit that comes before the ``.`` in the blue boxes, with
``.py`` added at the end of it. In this case, the file name would be
``cubeMeshSigNeur.py``.













Connecting two cells via a synapse

Below is the connectivity diagram for setting up a synaptic connection
from one neuron to another. The PulseGen object is there for
stimulating the presynaptic cell as part of experimental setup. The
cells are defined as single-compartments with Hodgkin-Huxley type Na+
and K+ channels.


[image: Two cells connected via synapse]





Multi Compartmental Leaky Neurons




Providing random input to a cell


[image: Random spike input to a cell]





Plastic synapse




Synapse Handler for Spikes




Recurrent integrate-and-fire network




Recurrent integrate-and-fire network with plasticity




Demonstration Models




Building Models







          

      

      

    

  

    
      
          
            
  
Tutorials



How to run these examples
Each of the following examples can be run by clicking on the green source button
on the right side of each example, and running from within a ``.py`` python file
on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in the main
moose directory. They can be found under

    (...)/moose/moose-examples/snippets

They can be run by typing

    $ python filename.py

in your command line, where filename.py is the python file you want to run.

All of the following examples show one or more methods within each python file.
For example, in the ``cubeMeshSigNeur`` section, there are two blue tabs
describing the ``cubeMeshSigNeur.createSquid()`` and ``cubeMeshSigNeur.main()``
methods.

The filename is the bit that comes before the ``.`` in the blue boxes, with
``.py`` added at the end of it. In this case, the file name would be
``cubeMeshSigNeur.py``.













Network with Ca-based plasticity







          

      

      

    

  

    
      
          
            
  
MultiScale Modeling



	Simple Examples
	Single-compartment multiscale model

	Multi compartment Single Neuron Model

	Modeling chemical reactions in neurons













          

      

      

    

  

    
      
          
            
  
Simple Examples



How to run these examples
Each of the following examples can be run by clicking on the green source button
on the right side of each example, and running from within a ``.py`` python file
on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in the main
moose directory. They can be found under

    (...)/moose/moose-examples/snippets

They can be run by typing

    $ python filename.py

in your command line, where filename.py is the python file you want to run.

All of the following examples show one or more methods within each python file.
For example, in the ``cubeMeshSigNeur`` section, there are two blue tabs
describing the ``cubeMeshSigNeur.createSquid()`` and ``cubeMeshSigNeur.main()``
methods.

The filename is the bit that comes before the ``.`` in the blue boxes, with
``.py`` added at the end of it. In this case, the file name would be
``cubeMeshSigNeur.py``.













Single-compartment multiscale model




Multi compartment Single Neuron Model




Modeling chemical reactions in neurons







          

      

      

    

  

    
      
          
            
  
Rdesignuer



	Rdesigneur: Building multiscale models
	Contents

	Introduction

	Rdesigneur examples

	Rdesigneur command reference





	Rdesigneur Examples
	Building Chemical-Electrical Signalling Models













          

      

      

    

  

    
      
          
            
  
Rdesigneur: Building multiscale models

Author: Upi Bhalla

Date: Aug 26 2016,

Last-Updated: Nov 08 2018

By: Upi Bhalla


Contents


Contents


	Rdesigneur: Building multiscale models


	Contents


	Introduction


	Rdesigneur examples


	Bare Rdesigneur: single passive compartment


	Simulate and display current pulse to soma


	Simulate and display voltage clamp stimulus to soma


	HH Squid model in a single compartment


	HH Squid model with voltage clamp


	HH Squid model in an axon


	Action potential collision in HH Squid axon model


	HH Squid model in a myelinated axon


	Alternate (non-squid) way to define soma


	Ball-and-stick model of a neuron


	Benchmarking simulation speed


	Synaptic stimulus: random (Possion)


	Synaptic stimulus: periodic


	Reaction system in a single compartment


	Reaction-diffusion system


	Primer on using the 3-D MOOGLI display


	Diffusion of a single molecule


	Calcium-induced calcium release


	Intracellular transport


	Travelling oscillator


	Bidirectional transport


	Controlling a reaction by a function


	Multiscale models: single compartment


	Multiscale model of CICR in dendrite triggered by synaptic input


	Multiscale model spanning PSD, spine head and dendrite


	Multiscale model in which spine geometry changes due to signaling


	Morphology: Load .swc morphology file and view it


	Build an active neuron model by putting channels into a morphology file


	Build a spiny neuron from a morphology file and put active channels in it.


	Place spines in a spiral along a dendrite






	Rdesigneur command reference


	turnOffElec


	useGssa


	combineSegments


	stealCellFromLibrary


	verbose


	addSomaChemCompt


	addEndoChemCompt


	diffusionLength


	temperature


	chemDt


	diffDt


	elecDt


	chemPlotDt


	elecPlotDt


	funcDt


	cellProto


	spineProto


	chanProto


	chemProto


	passiveDistrib


	spineDistrib


	chanDistrib


	chemDistrib


	adaptorList


	stimList


	plotList


	moogList

















Introduction

Rdesigneur (Reaction Diffusion and Electrical SIGnaling in NEURons)
is an interface to the multiscale modeling capabilities in MOOSE. It is
designed to build models incorporating biochemical signaling pathways in
dendrites and spines, coupled to electrical events in neurons.
Rdesigneur assembles models from predefined parts: it delegates the
details to specialized model definition formats. Rdesigneur combines one
or more of the following cell parts to build models:


	Neuronal morphology


	Dendritic spines


	Ion channels


	Reaction systems


	Adaptors that couple between these for multiscale models




It also folds in simulation input and output


	Time-series stimuli for molecular concentration change and reaction rates


	Current and voltage clamp


	Synaptic input.


	Time-series plots


	File dumps


	3-D neuronal graphics




Rdesigneur’s main role is to specify how these are put together,
including assigning parameters for the model. Using Rdesigneur one can compactly
and quickly put together quite complex multiscale models.




Rdesigneur examples

Here we provide a few use cases, building up from a minimal model to a
reasonably complete multiscale model spanning chemical and electrical
signaling. The files for these examples are also available in
moose-examples/tutorials/Rdesigneur, and the file names are mentioned
as we go along.


Bare Rdesigneur: single passive compartment

ex1_minimalModel.py

If we don’t provide any arguments at all to the Rdesigneur, it makes a
model with a single passive electrical compartment in the MOOSE path
/model/elec/soma. Here is how to do this:

import moose
import rdesigneur as rd
rdes = rd.rdesigneur()
rdes.buildModel()





To confirm that it has made a compartment with some default values we
can add a line:

moose.showfields( rdes.soma )





This should produce the output:

[ /model[0]/elec[0]/soma[0] ]
diameter         = 0.0005
fieldIndex       = 0
Ra               = 7639437.26841
y0               = 0.0
Rm               = 424413.177334
index            = 0
numData          = 1
inject           = 0.0
initVm           = -0.065
Em               = -0.0544
y                = 0.0
numField         = 1
path             = /model[0]/elec[0]/soma[0]
dt               = 0.0
tick             = -2
z0               = 0.0
name             = soma
Cm               = 7.85398163398e-09
x0               = 0.0
Vm               = -0.06
className        = ZombieCompartment
idValue          = 465
length           = 0.0005
Im               = 1.3194689277e-08
x                = 0.0005
z                = 0.0








Simulate and display current pulse to soma

ex2.0_currentPulse.py

A more useful script would run and display the model. Rdesigneur can
help with the stimulus and the plotting. This simulation has the same
passive compartment, and current is injected as the simulation runs.
This script displays the membrane potential of the soma as it charges
and discharges.

import moose
import rdesigneur as rd
rdes = rd.rdesigneur(
    stimList = [['soma', '1', '.', 'inject', '(t>0.1 && t<0.2) * 2e-8']],
    plotList = [['soma', '1', '.', 'Vm', 'Soma membrane potential']],
)
rdes.buildModel()
moose.reinit()
moose.start( 0.3 )
rdes.display()





The stimList defines a stimulus. Each entry has five arguments:

`[region_in_cell, region_expression, moose_object, parameter, expression_string]`






	region_in_cell specifies the objects to stimulate. Here it is
just the soma.


	region_expression specifies a geometry based calculation to
decide whether to apply the stimulus. The value must be >0 for the
stimulus to be present. Here it is just 1. moose_object specifies
the simulation object to operate upon during the stimulus. Here the
. means that it is the soma itself. In other models it might be a
channel on the soma, or a synapse, and so on.


	parameter specifies the simulation parameter on the moose object
that the stimulus will modify. Here it is the injection current to
the soma compartment.


	expression_string calculates the value of the parameter,
typically as a function of time. Here we use the function
(t>0.1 && t<0.2) * 2e-8 which evaluates as 2e-8 between the times
of 0.1 and 0.2 seconds.




To summarise this, the stimList here means inject a current of 20nA
to the soma between the times of 0.1 and 0.2 s.

The plotList defines what to plot. It has a similar set of arguments:

`[region_in_cell, region_expression, moose_object, parameter, title_of_plot]`





These mean the same thing as for the stimList except for the title of
the plot.

The rdes.display() function causes the plots to be displayed.


[image: Plot for current input to passive compartment]
Plot for current input to passive compartment



When we run this we see an initial depolarization as the soma settles
from its initial -65 mV to a resting Em = -54.4 mV. These are the
original HH values, see the example above. At t = 0.1 seconds there is
another depolarization due to the current injection, and at t = 0.2
seconds this goes back to the resting potential.




Simulate and display voltage clamp stimulus to soma

ex2.1_vclamp.py

This model introduces the voltage clamp stimulus on a passive compartment.
As before, we add a few lines to define the stimulus and plot.
This script displays both the membrane potential, and the holding current
of the voltage clamp circuit as
it charges and discharges the passive compartment model.

import moose
import rdesigneur as rd
rdes = rd.rdesigneur(
    stimList = [['soma', '1', '.', 'vclamp', '-0.065 + (t>0.1 && t<0.2) * 0.02' ]],
    plotList = [
        ['soma', '1', '.', 'Vm', 'Soma membrane potential'],
        ['soma', '1', 'vclamp', 'current', 'Soma holding current'],
    ]
)
rdes.buildModel()
moose.reinit()
moose.start( 0.3 )
rdes.display()





Here the stimList line tells the system to deliver a voltage clamp (vclamp)
on the soma, starting at -65 mV and jumping up by 20 mV between 0.1 and 0.2
seconds. The plotList now includes two entries, and will generate two plots.
The first is for plotting the soma membrane potential, just to be sure that
the voltage clamp is doing its job.


[image: Plot for membrane potential in voltage clamp]
Plot for membrane potential in voltage clamp



The second graph plots the holding current.  Note the capacitive transients.


[image: Plot for holding current for voltage clamp]
Plot for holding current for voltage clamp






HH Squid model in a single compartment

ex3.0_squid_currentPulse.py

Here we put the Hodgkin-Huxley squid model channels into a passive
compartment. The HH channels are predefined as prototype channels for
Rdesigneur,

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(
    chanProto = [['make_HH_Na()', 'Na'], ['make_HH_K()', 'K']],
    chanDistrib = [
        ['Na', 'soma', 'Gbar', '1200' ],
        ['K', 'soma', 'Gbar', '360' ]],
    stimList = [['soma', '1', '.', 'inject', '(t>0.1 && t<0.2) * 1e-8' ]],
    plotList = [['soma', '1', '.', 'Vm', 'Membrane potential']]
)

rdes.buildModel()
moose.reinit()
moose.start( 0.3 )
rdes.display()





Here we introduce two new model specification lines:


	chanProto: This specifies which ion channels will be used in the
model. Each entry here has two fields: the source of the channel
definition, and (optionally) the name of the channel. In this example
we specify two channels, an Na and a K channel using the original
Hodgkin-Huxley parameters. As the source of the channel definition we
use the name of the Python function that builds the channel. The
make_HH_Na() and make_HH_K() functions are predefined but we
can also specify our own functions for making prototypes. We could
also have specified the channel prototype using the name of a channel
definition file in ChannelML (a subset of NeuroML) format.


	chanDistrib: This specifies where the channels should be placed
over the geometry of the cell. Each entry in the chanDistrib list
specifies the distribution of parameters for one channel using four
entries:

[object_name, region_in_cell, parameter, expression_string]

In this case the job is almost trivial, since we just have a single
compartment named soma. So the line

['Na', 'soma', 'Gbar', '1200' ]

means Put the Na channel in the soma, and set its maximal
conductance density (Gbar) to 1200 Siemens/m^2.





As before we apply a somatic current pulse. Since we now have HH
channels in the model, this generates action potentials.


[image: Plot for HH squid simulation]
Plot for HH squid simulation



There are several interesting things to do with the model by varying stimulus
parameters:



	Change injection current.


	Put in a protocol to get rebound action potential.


	Put in a current ramp, and run it for a different duration


	Put in a frequency chirp, and see how the squid model is tuned
to a certain frequency range.


	Modify channel or passive parameters. See if it still fires.


	Try the frequency chirp on the cell with parameters changed. Does
the tuning change?










HH Squid model with voltage clamp

ex3.1_squid_vclamp.py

This is the same squid model, but now we add a voltage clamp to the squid
and monitor the holding current. This stimulus line is identical to ex2.1.

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(
    chanProto = [['make_HH_Na()', 'Na'], ['make_HH_K()', 'K']],
    chanDistrib = [
        ['Na', 'soma', 'Gbar', '1200' ],
        ['K', 'soma', 'Gbar', '360' ]],
    stimList = [['soma', '1', '.', 'vclamp', '-0.065 + (t>0.1 && t<0.2) * 0.02' ]],
    plotList = [
        ['soma', '1', '.', 'Vm', 'Membrane potential'],
        ['soma', '1', 'vclamp', 'current', 'Soma holding current']
    ]
)
rdes.buildModel()
moose.reinit()
moose.start( 0.3 )
rdes.display()





Here we see the classic HH current response, a downward brief deflection due to
the Na channel, and a slower upward sustained current due to the K delayed
rectifier.


[image: Plot for HH squid voltage clamp pulse.]
Plot for HH squid voltage clamp pulse.



Here are some suggestions for further exploration:



	Monitor individual channel currents through additional plots.


	Convert this into a voltage clamp series. Easiest way to do this is
to complete the rdes.BuildModel, then delete the Function object
on the /model/elec/soma/vclamp. Now you can simply set the ‘command’
field of the vclamp in a for loop, going from -ve to +ve voltages.
Remember, SI units. You may wish to capture the plot vectors each
cycle. The plot vectors are accessed by something like




moose.element( '/model/graphs/plot1' ).vector







HH Squid model in an axon

ex3.2_squid_axon_propgn.py

Here we put the Hodgkin-Huxley squid model into a long compartment that
is subdivided into many segments, so that we can watch action potentials
propagate. Most of this example is boilerplate code to build a spiral
axon. There is a short rdesigneur segment that takes the spiral axon
prototype and populates it with channels, and sets up the display. Later
examples will show you how to read morphology files to specify the
neuronal geometry.

import numpy as np
import moose
import pylab
import rdesigneur as rd

numAxonSegments = 200
comptLen = 10e-6
comptDia = 1e-6
RM = 1.0
RA = 10.0
CM = 0.01

def makeAxonProto():
        axon = moose.Neuron( '/library/axon' )
        prev = rd.buildCompt( axon, 'soma', RM = RM, RA = RA, CM = CM, dia = 10e-6, x=0, dx=comptLen)
        theta = 0
        x = comptLen
        y = 0.0

        for i in range( numAxonSegments ):
            dx = comptLen * np.cos( theta )
            dy = comptLen * np.sin( theta )
            r = np.sqrt( x * x + y * y )
            theta += comptLen / r
            compt = rd.buildCompt( axon, 'axon' + str(i), RM = RM, RA = RA, CM = CM, x = x, y = y, dx = dx, dy = dy, dia = comptDia )
            moose.connect( prev, 'axial', compt, 'raxial' )
            prev = compt
            x += dx
            y += dy

        return axon

moose.Neutral( '/library' )
makeAxonProto()

rdes = rd.rdesigneur(
        chanProto = [['make_HH_Na()', 'Na'], ['make_HH_K()', 'K']],
        cellProto = [['elec','axon']],
        chanDistrib = [
            ['Na', '#', 'Gbar', '1200' ],
            ['K', '#', 'Gbar', '360' ]],
        stimList = [['soma', '1', '.', 'inject', '(t>0.01 && t<0.2) * 2e-11' ]],
        plotList = [['soma', '1', '.', 'Vm', 'Membrane potential']],
        moogList = [['#', '1', '.', 'Vm', 'Vm (mV)']]
        )

rdes.buildModel()
moose.reinit()

rdes.displayMoogli( 0.00005, 0.05, 0.0 )






[image: Axon with propagating action potential]
Axon with propagating action potential



Note how we explicitly create the prototype axon on ‘/library’, and then
specify it using the cellProto line in the rdesigneur. The moogList
specifies the 3-D display. See below for how to set up and use these
displays.




Action potential collision in HH Squid axon model

ex3.3_AP_collision.py

This is identical to the previous example, except that now we deliver current
injection at at two points, the soma and a point along the axon. The modified
stimulus line is:

...
stimList = [['soma', '1', '.', 'inject', '(t>0.01 && t<0.2) * 2e-11' ],
['axon100', '1', '.', 'inject', '(t>0.01 && t<0.2) * 3e-11' ]],
...





Watch how the AP is triggered bidirectionally from the stimulus point on the
100th segment of the axon, and observe what happens when two action potentials
bump into each other.


[image: Colliding action potentials]
Colliding action potentials






HH Squid model in a myelinated axon

ex3.4_myelinated_axon.py

This is a curious cross-species chimera model, where we embed the HH
equations into a myelinated example model. As for the regular axon
above, most of the example is boilerplate setup code. Note how we
restrict the HH channels to the nodes of Ranvier using a conditional
test for the diameter of the axon segment.

import numpy as np
import moose
import pylab
import rdesigneur as rd

numAxonSegments = 405
nodeSpacing = 100
comptLen = 10e-6
comptDia = 2e-6 # 2x usual
RM = 100.0 # 10x usual
RA = 5.0
CM = 0.001 # 0.1x usual

nodeDia = 1e-6
nodeRM = 1.0
nodeCM = 0.01

def makeAxonProto():
    axon = moose.Neuron( '/library/axon' )
    x = 0.0
    y = 0.0
    prev = rd.buildCompt( axon, 'soma', RM = RM, RA = RA, CM = CM, dia = 10e-6, x=0, dx=comptLen)
    theta = 0
    x = comptLen

    for i in range( numAxonSegments ):
        r = comptLen
        dx = comptLen * np.cos( theta )
        dy = comptLen * np.sin( theta )
        r = np.sqrt( x * x + y * y )
        theta += comptLen / r
        if i % nodeSpacing == 0:
            compt = rd.buildCompt( axon, 'axon' + str(i), RM = nodeRM, RA = RA, CM = nodeCM, x = x, y = y, dx = dx, dy = dy, dia = nodeDia )
        else:
            compt = rd.buildCompt( axon, 'axon' + str(i), RM = RM, RA = RA, CM = CM, x = x, y = y, dx = dx, dy = dy, dia = comptDia )
        moose.connect( prev, 'axial', compt, 'raxial' )
        prev = compt
        x += dx
        y += dy

    return axon

moose.Neutral( '/library' )
makeAxonProto()

rdes = rd.rdesigneur(
    chanProto = [['make_HH_Na()', 'Na'], ['make_HH_K()', 'K']],
    cellProto = [['elec','axon']],
    chanDistrib = [
        ['Na', '#', 'Gbar', '12000 * (dia < 1.5e-6)' ],
        ['K', '#', 'Gbar', '3600 * (dia < 1.5e-6)' ]],
    stimList = [['soma', '1', '.', 'inject', '(t>0.01 && t<0.2) * 1e-10' ]],
    plotList = [['soma,axon100,axon200,axon300,axon400', '1', '.', 'Vm', 'Membrane potential']],
    moogList = [['#', '1', '.', 'Vm', 'Vm (mV)']]
)

rdes.buildModel()

for i in moose.wildcardFind( "/model/elec/#/Na" ):
    print i.parent.name, i.Gbar

moose.reinit()

rdes.displayMoogli( 0.00005, 0.05, 0.0 )





When you run the example, keep an eye out for a few things:


	saltatory conduction: This is the way the action potential jumps
from one node of Ranvier to the next. Between the nodes it is just
passive propagation.


	Failure to propagate: Observe that the second and fourth action
potentials fails to trigger propagation along the axon. Here we have
specially tuned the model properties so that this happens. With a
larger RA of 10.0, the model will be more reliable.


	Speed: Compare the propagation speed with the previous,
unmyelinated axon. Note that the current model is larger!





[image: Myelinated axon with propagating action potential]
Myelinated axon with propagating action potential






Alternate (non-squid) way to define soma

ex4.0_scaledSoma.py

The default HH-squid axon is not a very convincing soma. Rdesigneur offers a
somewhat more general way to define the soma in the  cell prototype line.

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(
    # cellProto syntax: ['somaProto', 'name', dia, length]
    cellProto = [['somaProto', 'soma', 20e-6, 200e-6]],
    chanProto = [['make_HH_Na()', 'Na'], ['make_HH_K()', 'K']],
    chanDistrib = [
        ['Na', 'soma', 'Gbar', '1200' ],
        ['K', 'soma', 'Gbar', '360' ]],
    stimList = [['soma', '1', '.', 'inject', '(t>0.01 && t<0.05) * 1e-9' ]],
    plotList = [['soma', '1', '.', 'Vm', 'Membrane potential']],
    moogList = [['#', '1', '.', 'Vm', 'Vm (mV)']]
)

rdes.buildModel()
soma = moose.element( '/model/elec/soma' )
print( 'Soma dia = {}, length = {}'.format( soma.diameter, soma.length ) )
moose.reinit()

rdes.displayMoogli( 0.0005, 0.06, 0.0 )





Here the crucial line is the cellProto line. There are four arguments here:


['somaProto', 'name', dia, length]


	The first argument tells the system to use a prototype soma, that is
a single cylindrical compartment.


	The second argument is the name to give the cell.


	The third argument is the diameter. Note that this is a double,
not a string.


	The fourth argument is the length of the cylinder that makes up the
soma. This too is a double, not a string.
The cylinder is oriented along the x axis, with one end at (0,0,0)
and the other end at (length, 0, 0).







This is what the soma looks like:


[image: Image of soma.]
Image of soma.



It a somewhat elongated soma, being a cylinder 10 times as long as it is wide.




Ball-and-stick model of a neuron

ex4.1_ballAndStick.py

A somewhat more electrically reasonable model of a neuron has a soma and a
single dendrite, which can itself be subdivided into segments so that it
can exhibit voltage gradients, have channel and receptor distributions,
and so on. This is accomplished in rdesigneur using a variant of the
cellProto syntax.

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(
    # cellProto syntax: ['ballAndStick', 'name', somaDia, somaLength, dendDia, dendLength, numDendSegments ]
    # The numerical arguments are all optional
    cellProto = [['ballAndStick', 'soma', 20e-6, 20e-6, 4e-6, 500e-6, 10]],
    chanProto = [['make_HH_Na()', 'Na'], ['make_HH_K()', 'K']],
    chanDistrib = [
        ['Na', 'soma', 'Gbar', '1200' ],
        ['K', 'soma', 'Gbar', '360' ],
        ['Na', 'dend#', 'Gbar', '400' ],
        ['K', 'dend#', 'Gbar', '120' ]
        ],
    stimList = [['soma', '1', '.', 'inject', '(t>0.01 && t<0.05) * 1e-9' ]],
    plotList = [['soma', '1', '.', 'Vm', 'Membrane potential']],
    moogList = [['#', '1', '.', 'Vm', 'Vm (mV)']]
)
rdes.buildModel()
soma = moose.element( '/model/elec/soma' )
moose.reinit()
rdes.displayMoogli( 0.0005, 0.06, 0.0 )





As before, the cellProto line plays a key role. Here, because we have a long
dendrite, we have a few more numerical arguments. All of the numerical
arguments are optional.


['ballAndStick', 'name', somaDia, somaLength, dendDia, dendLength, numDendSegments ]



	The first argument specifies a ballAndStick model: soma + dendrite.
The length of the dendrite is along the x axis. The soma is a single
segment, the dendrite can be more than one.


	The second argument is the name to give the cell.


	Arg 3 is the soma diameter, as a double.


	Arg 4 is the length of the soma, as a double.


	Arg 5 is the diameter of the dendrite, as a double.


	Arg 6 is the length of the dendrite, as a double.


	Arg 7 is the number of segments into which the dendrite should be
divided. This is a positive integer greater than 0.










This is what the ball-and-stick cell looks like:


[image: Image of ball and stick cell.]
Image of ball and stick cell.



In this version of the 3-D display, the soma is displayed as a bit blocky
rather than round.
Note that we have populated the dendrite with Na and K channels and it has
10 segments, so it supports action potential propagation. The snapshot
illustrates this.

Here are some things to try:



	Change the length of the dendrite


	Change the number of segments. Explore what it does to accuracy. How
will you know that you have an accurate model?










Benchmarking simulation speed

ex4.2_ballAndStickSpeed.py

The ball-and-stick model gives us an opportunity to check out your system
and how computation scales with model size. While we’re at it we’ll deliver
a sine-wave stimulus just to see how it can be done. The test model is
very similar to the previous one, ex4.1:

import moose
import pylab
import rdesigneur as rd
import time
rdes = rd.rdesigneur(
    cellProto = [['ballAndStick', 'soma', 20e-6, 20e-6, 4e-6, 500e-6, 10]],
    chanProto = [['make_HH_Na()', 'Na'], ['make_HH_K()', 'K']],
    chanDistrib = [
        ['Na', 'soma', 'Gbar', '1200' ],
        ['K', 'soma', 'Gbar', '360' ],
        ['Na', 'dend#', 'Gbar', '400' ],
        ['K', 'dend#', 'Gbar', '120' ]
    ],
    stimList = [['soma', '1', '.', 'inject', '(1+cos(t/10))*(t>31.4 && t<94) * 0
.2e-9' ]],
    plotList = [
        ['soma', '1', '.', 'Vm', 'Membrane potential'],
        ['soma', '1', '.', 'inject', 'Stimulus current']
    ],
)
rdes.buildModel()
runtime = 100
moose.reinit()
t0= time.time()
moose.start( runtime )
print "Real time to run {} simulated seconds = {} seconds".format( runtime, time
.time() - t0 )

rdes.display()





While the real point of this simulation is to check speed, it does illustrate
how to deliver a stimulus shaped like a sine wave:


[image: Sine-wave shaped stimulus.]
Sine-wave shaped stimulus.



We can see that the cell has a peculiar response to this. Not surprising, as
the cell uses HH channels which are not good at rate coding.


[image: Spiking response to sine-wave shaped stimulus.]
Spiking response to sine-wave shaped stimulus.



As a reference point, on a fast 2018 laptop this benchmark runs in 5.4 seconds.
Some more things to try for benchmarking:



	How slow does it get if you turn on the 3-D moogli display?


	Is it costlier to run 2 compartments for 1000 seconds, or
200 compartments for 10 seconds?










Synaptic stimulus: random (Possion)

ex5.0_random_syn_input.py

In this example we introduce synaptic inputs: both the receptor channels
and a means for stimulating the channels. We do this in a passive model.

import moose
import rdesigneur as rd
rdes = rd.rdesigneur(
    cellProto = [['somaProto', 'soma', 20e-6, 200e-6]],
    chanProto = [['make_glu()', 'glu']],
    chanDistrib = [['glu', 'soma', 'Gbar', '1' ]],
    stimList = [['soma', '0.5', 'glu', 'randsyn', '50' ]],
    # Deliver stimulus to glu synapse on soma, at mean 50 Hz Poisson.
    plotList = [['soma', '1', '.', 'Vm', 'Soma membrane potential']]
)
rdes.buildModel()
moose.reinit()
moose.start( 0.3 )
rdes.display()





Most of the rdesigneur setup uses familiar syntax.

Novelty 1: we use the default built-in glutamate receptor model, in chanProto.
We just put it in the soma at a max conductance of 1 Siemen/sq metre.

Novelty 2: We specify a new kind of stimulus in the stimList:


['soma', '0.5', 'glu', 'randsyn', '50' ]




Most of this is similar to previous stimLists.



	arg0: ‘soma’: the named compartments in the cell to populate with
the glu receptor


	arg1: ‘0.5’: Tell the system to use a uniform synaptic weight of 0.5.
This argument could be a more complicated expression incorporating
spatial arguments. Here it is just uniform.


	arg2: ‘glu’: Which receptor to stimulate


	arg3: ‘randsyn’: Apply random (Poisson) synaptic input.


	arg4: ‘50’: Mean firing rate of the Poisson input. Note that this last
argument could be a function of time and hence is quite versatile.







As the model has no voltage-gated channels, we do not see spiking.


[image: Random synaptic input with a Poisson distribution.]
Random synaptic input with a Poisson distribution.



Things to try: Vary the rate and the weight of the synaptic input.




Synaptic stimulus: periodic

ex5.1_periodic_syn_input.py

This is almost identical to 5.0, except that the input is now perfectly
periodic. The one change is of an argument in the stimList to say
periodicsyn rather than randsyn.

import moose
import rdesigneur as rd
rdes = rd.rdesigneur(
    cellProto = [['somaProto', 'soma', 20e-6, 200e-6]],
    chanProto = [['make_glu()', 'glu']],
    chanDistrib = [['glu', 'soma', 'Gbar', '1' ]],

    # Deliver stimulus to glu synapse on soma, periodically at 50 Hz.
    stimList = [['soma', '0.5', 'glu', 'periodicsyn', '50' ]],
    plotList = [['soma', '1', '.', 'Vm', 'Soma membrane potential']]
)
rdes.buildModel()
moose.reinit()
moose.start( 0.3 )
rdes.display()





As designed, we get periodically firing synaptic input.


[image: Periodic synaptic input]
Periodic synaptic input






Reaction system in a single compartment

ex6_chem_osc.py

Here we use the compartment as a place in which to embed a chemical
model. The chemical oscillator model is predefined in the rdesigneur
prototypes. Its general form is:

s ---a---> a  // s goes to a, catalyzed by a.
s ---a---> b  // s goes to b, catalyzed by a.
a ---b---> s  // a goes to s, catalyzed by b.
b -------> s  // b is degraded irreversibly to s





Here is the script:

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(
        turnOffElec = True,
        diffusionLength = 1e-3, # Default diffusion length is 2 microns
        chemProto = [['makeChemOscillator()', 'osc']],
        chemDistrib = [['osc', 'soma', 'install', '1' ]],
        plotList = [['soma', '1', 'dend/a', 'conc', 'a Conc'],
            ['soma', '1', 'dend/b', 'conc', 'b Conc']]
)
rdes.buildModel()
b = moose.element( '/model/chem/dend/b' )
b.concInit *= 5
moose.reinit()
moose.start( 200 )

rdes.display()





In this special case we set the turnOffElec flag to True, so that
Rdesigneur only sets up chemical and not electrical calculations. This
makes the calculations much faster, since we disable electrical
calculations and delink chemical calculations from them.

We also have a line which sets the diffusionLength to 1 mm, so that
it is bigger than the 0.5 mm squid axon segment in the default
compartment. If you don’t do this the system will subdivide the
compartment into the default 2 micron voxels for the purposes of putting
in a reaction-diffusion system. We discuss this case below.

Note how the plotList is done here. To remind you, each entry has five
arguments

[region_in_cell, region_expression, moose_object, parameter, title_of_plot]





The change from the earlier usage is that the moose_object now
refers to a chemical entity, in this example the molecule dend/a. The
simulator builds a default chemical compartment named dend to hold the
reactions defined in the chemProto. What we do in this plot is to
select molecule a sitting in dend, and plot its concentration. Then
we do this again for molecule b.

After the model is built, we add a couple of lines to change the initial
concentration of the molecular pool b. Note its full path within
MOOSE: /model/chem/dend/b. It is scaled up 5x to give rise to slowly
decaying oscillations.


[image: Plot for single-compartment reaction simulation]
Plot for single-compartment reaction simulation






Reaction-diffusion system

ex7.0_spatial_chem_osc.py

In order to see what a reaction-diffusion system looks like, we assign the
diffusionLength expression in the previous example to a much shorter
length, and add a couple of lines to set up 3-D graphics for the
reaction-diffusion product:

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(
        turnOffElec = True,
        #This subdivides the length of the soma into 2 micron voxels
        diffusionLength = 2e-6,
        chemProto = [['makeChemOscillator()', 'osc']],
        chemDistrib = [['osc', 'soma', 'install', '1' ]],
        plotList = [['soma', '1', 'dend/a', 'conc', 'Concentration of a'],
            ['soma', '1', 'dend/b', 'conc', 'Concentration of b']],
        moogList = [['soma', '1', 'dend/a', 'conc', 'a Conc', 0, 360 ]]
)

rdes.buildModel()
bv = moose.vec( '/model/chem/dend/b' )
bv[0].concInit *= 2
bv[-1].concInit *= 2
moose.reinit()

rdes.displayMoogli( 1, 400, rotation = 0, azim = np.pi/2, elev = 0.0 )





This is the new value for diffusion length.

diffusionLength = 2e-3,





With this change we tell rdesigneur to use the diffusion length of 2 microns.
This happens to be the default too. The 500-micron axon segment is now
subdivided into 250 voxels, each of which has a reaction system and
diffusing molecules.
To make it more picturesque, we have added a line after the plotList, to
display the outcome in 3-D:

moogList = [['soma', '1', 'dend/a', 'conc', 'a Conc', 0, 360 ]]





This line says: take the model compartments defined by soma as the
region to display, do so throughout the the geometry (the 1
signifies this), and over this range find the chemical entity defined by
dend/a. For each a molecule, find the conc and dsiplay it.
There are two optional arguments, 0 and 360, which specify the
low and high value of the displayed variable.

In order to initially break the symmetry of the system, we change the
initial concentration of molecule b at each end of the cylinder:

bv[0].concInit *= 2
bv[-1].concInit *= 2





If we didn’t do this the entire system would go through a few cycles of
decaying oscillation and then reach a boring, spatially uniform, steady
state. Try putting an initial symmetry break elsewhere to see what
happens.

To display the concenctration changes in the 3-D soma as the simulation
runs, we use the line

rdes.displayMoogli( 1, 400, rotation = 0, azim = np.pi/2, elev = 0.0 )





The arguments mean: displayMoogli( frametime, runtime, rotation, azimuth, elevation )
Here,

frametime = time by which simulation advances between display updates
runtime = Total simulated time
rotation = angle by which display rotates in each frame, in radians.
azimuth = Azimuth angle of view point, in radians
elevation = elevation angle of view point, in radians





When we run this, we first get a 3-D display with the oscillating
reaction-diffusion system making its way inward from the two ends. After
the simulation ends the plots for all compartments for the whole run
come up.


[image: Display for oscillatory reaction-diffusion simulation]
Display for oscillatory reaction-diffusion simulation



For those who would rather use the much simpler matplotlib 3-D display option,
this is what the same simulation looks like:


[image: Display for oscillatory reac-diff simulation using matplotlib]
Display for oscillatory reac-diff simulation using matplotlib






Primer on using the 3-D MOOGLI display

There are two variants of the MOOGLI display. The first, named Moogli,
uses OpenGL and OpenSceneGraph. It is fast to display, slow to load, and
difficult to compile. It produces much better looking 3-D graphics.
The second is a fallback interface using mplot3d, which is a library of
Matplotlib and so should be generally available. It is slower to display,
faster to load, but needs no special compilation. It uses stick graphics
and though it conveys much the same information, isn’t as nice to look at
as the original Moogli. Its controls are more or less the same but less
smooth than the original Moogli.

Here is a short primer on the 3-D display controls.


	Roll, pitch, and yaw: Use the letters r, p, and y. To rotate
backwards, use capitals.


	Zoom out and in: Use the , and . keys, or their upper-case
equivalents, < and >. Easier to remember if you think in terms of
the upper-case.


	Left/right/up/down: Arrow keys.


	Quit: control-q or control-w.


	You can also use the mouse or trackpad to control most of the above.


	By default rdesigneur gives Moogli a small rotation each frame. It is
the rotation argument in the line:

displayMoogli( frametime, runtime, rotation )





These controls operate over and above this rotation, but the rotation
continues. If you set the rotation to zero you can, with a suitable
flick of the mouse, get the image to rotate in any direction you choose
as long as the window is updating.




Diffusion of a single molecule

ex7.1_diffusive_gradient.py

This is simply a test model to confirm that simple diffusion happens as
expected. While the model is just that of a single pool, we spend a few lines
taking snapshots of the spatial profile of this pool.

import moose
import pylab
import re
import rdesigneur as rd
import matplotlib.pyplot as plt
import numpy as np

moose.Neutral( '/library' )
moose.Neutral( '/library/diffn' )
moose.CubeMesh( '/library/diffn/dend' )
A = moose.Pool( '/library/diffn/dend/A' )
A.diffConst = 1e-10

rdes = rd.rdesigneur(
    turnOffElec = True,
    diffusionLength = 1e-6,
    chemProto = [['diffn', 'diffn']],
    chemDistrib = [['diffn', 'soma', 'install', '1' ]],
    moogList = [
            ['soma', '1', 'dend/A', 'conc', 'A Conc', 0, 360 ]
    ]
)
rdes.buildModel()

rdes.displayMoogli( 1, 2, rotation = 0, azim = -np.pi/2, elev = 0.0, block = False )
av = moose.vec( '/model/chem/dend/A' )
for i in range(10):
    av[i].concInit = 1
moose.reinit()
plist = []
for i in range( 20 ):
    plist.append( av.conc[:200] )
    moose.start( 2 )
fig = plt.figure( figsize = ( 10, 12 ) )
plist = np.array( plist ).T
plt.plot( range( 0, 200 ), plist )
plt.xlabel( "position ( microns )" )
plt.ylabel( "concentration ( mM )" )
plt.show( block = True )





Here are the snapshots, overlaid in a single plot:


[image: Display of how a molecule A spreads through the inter]
Display for simple time-series of spread of a diffusing molecule
using matplotlib






Calcium-induced calcium release

ex7.2_CICR.py

This is a somewhat more complex reaction-diffusion system, involving calcium
release from intracellular stores that propagates in a wave of activity along
a dendrite. This example demonstrates the use of endo compartments.

Endo-compartments, as the name suggests, represent compartments that sit
within other cellular compartments. If the surround compartment is subdivided
into N voxels, so is the endo- compartment. The rdesigneur system looks at the
provided model, and if there are 2 compartments and the addEndoChemCompt flag
is True, then the chemistry contained in the smaller of the two compartments is
positioned in an endo compartment surrounded by the first compartment.
Here we use the endo-compartment to represent the endoplasmic reticulum sitting
inside the dendrite.

In the chemical model, we also introduce a new MOOSE class,
ConcChan. These act as membrane pores whose permeability scales with
number of channels in the open state. The IP3 receptor in this model is
implemented as a ConcChan which opens due to binding to IP3 and Calcium.
This leads to the release of more calcium from the ER, and this feedback
loop develops into a propagating-wave oscillation.

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(
    turnOffElec = True,
    chemDt = 0.005,
    chemPlotDt = 0.02,
    diffusionLength = 1e-6,
    useGssa = False,
    addSomaChemCompt = False,
    addEndoChemCompt = True,
    # cellProto syntax: ['somaProto', 'name', dia, length]
    cellProto = [['somaProto', 'soma', 2e-6, 10e-6]],
    chemProto = [['./chem/CICRwithConcChan.g', 'chem']],
    chemDistrib = [['chem', 'soma', 'install', '1' ]],
    plotList = [
        ['soma', '1', 'dend/CaCyt', 'conc', 'Dendritic Ca'],
        ['soma', '1', 'dend/CaCyt', 'conc', 'Dendritic Ca', 'wave'],
        ['soma', '1', 'dend_endo/CaER', 'conc', 'ER Ca'],
        ['soma', '1', 'dend/ActIP3R', 'conc', 'active IP3R'],
    ],
)
rdes.buildModel()
IP3 = moose.element( '/model/chem/dend/IP3' )
IP3.vec.concInit = 0.004
IP3.vec[0].concInit = 0.02
moose.reinit()
moose.start( 40 )
rdes.display()





Note how the dendritic calcium is displayed both as a time-series plot and
as a wave plot, which presents the time-evolution of the calcium as a function
of position in successive image frames.


[image: Time-series plot of dendritic calcium. Different colors represent different voxels in the dendrite.]
Time-series plot of dendritic calcium. Different colors represent
different voxels in the dendrite.




[image: ../../../_images/ex7.2_CICR_wave_lastFrame.png]
Place holder for time-evolving movie of dendritic calcium as a function of
position along the dendrite.






Intracellular transport

ex7.3_simple_transport.py

This illustrates how intracellular transport works in MOOSE. We have a
an elongated soma in which molecules start out at the left and are transported
to the right. Note that they spread out as they go along,
This is because the transport is implemented as drift-diffusion, in which a
fraction of the molecules move to the next location each timestep. The
equation is


flux = motorConst * conc / spacing




for a uniform cylinder. MOOSE applies suitable scaling terms if the neuronal
geometry is non-uniform.

import moose
import numpy as np
import pylab
import rdesigneur as rd

moose.Neutral( '/library' )
moose.Neutral( '/library/transp' )
moose.CubeMesh( '/library/transp/dend' )
A = moose.Pool( '/library/transp/dend/A' )
A.diffConst = 0
A.motorConst = 1e-6     # Metres/sec

rdes = rd.rdesigneur(
    turnOffElec = True,
    #This subdivides the length of the soma into 0.5 micron voxels
    diffusionLength = 0.5e-6,
    cellProto = [['somaProto', 'soma', 2e-6, 50e-6]],
    chemProto = [['transp', 'transp']],
    chemDistrib = [['transp', 'soma', 'install', '1' ]],
    plotList = [
        ['soma', '1', 'dend/A', 'conc', 'Concentration of A'],
        ['soma', '1', 'dend/A', 'conc', 'Concentration of A', 'wave'],
    ],
    moogList = [['soma', '1', 'dend/A', 'conc', 'A Conc', 0, 20 ]]
)
rdes.buildModel()
moose.element( '/model/chem/dend/A[0]' ).concInit = 0.1
moose.reinit()
rdes.displayMoogli( 1, 80, rotation = 0, azim = -np.pi/2, elev = 0.0 )





In this example we explicitly create the single-molecule reaction system,
and assign a motorConst of 1 micron/sec to the molecule A. We start off with
all the molecules in a single voxel on the left of the cylinder, and then
watch the molecules move.
Once the molecules reach the end of the cylindrical soma, they have nowhere
further to go so they pile up.


[image: Transport frame 1.]



[image: Transport frame 2.]



[image: Transport frame 3.]



[image: Transport frame 4.]



[image: Transport frame 5.]



[image: Transport frame 6.]
Frames at increasing intervals from the transport simulation showing
spreading and piling up of the molecule at the right end of the cylinder.



Suggestions:



	Play with different motor rates.


	The motor constant sign detemines the direction of transport. See
what happens if you get it going in the opposite direction.


	Consider how you could avoid the buildup in the last voxel.


	Consider how to achieve a nice exponential falloff over a
much longer range than possible with diffusion.










Travelling oscillator

ex7.4_travelling_osc.py

Here we put a chemical oscillator into a cylinder, and activate motor transport
in one of the molecules. The oscillatory zone slowly moves to the right, with
an amplification in the last compartment due to end-effects.

import moose
import numpy as np
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(
    turnOffElec = True,
    diffusionLength = 2e-6,
    chemProto = [['makeChemOscillator()', 'osc']],
    chemDistrib = [['osc', 'soma', 'install', '1' ]],
    plotList = [
        ['soma', '1', 'dend/a', 'conc', 'Concentration of a'],
        ['soma', '1', 'dend/b', 'conc', 'Concentration of b'],
        ['soma', '1', 'dend/a', 'conc', 'Concentration of a', 'wave'],
    ],
    moogList = [['soma', '1', 'dend/a', 'conc', 'a Conc', 0, 360 ]]
)
a = moose.element( '/library/osc/kinetics/a' )
b = moose.element( '/library/osc/kinetics/b' )
s = moose.element( '/library/osc/kinetics/s' )
a.diffConst = 0
b.diffConst = 0
a.motorConst = 1e-6

rdes.buildModel()
moose.reinit()

rdes.displayMoogli( 1, 400, rotation = 0, azim = -np.pi/2, elev = 0.0 )






[image: Travelling Oscillator]
Snapshot of travelling oscillator waveform at t = 198.



Suggestions:



	What happens if all molecules undergo transport?


	What happens if b is transported opposite to a?


	What happens if there is also diffusion?










Bidirectional transport

ex7.5_bidirectional_transport.py

This is almost identical to ex7.4, except that we implement bidirectional
transport. Molecule a goes from left to right, and b and s go from
right to left. Here we see that the system builds up with large oscillations
in the middle as the molecules converge, then the peaks collapse when
the molecules go away.

import moose
import numpy as np
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(
    turnOffElec = True,
    diffusionLength = 2e-6,
    numWaveFrames = 50,
    chemProto = [['makeChemOscillator()', 'osc']],
    chemDistrib = [['osc', 'soma', 'install', '1' ]],
    plotList = [
        ['soma', '1', 'dend/a', 'conc', 'Concentration of a', 'wave', 0, 1800],
        ['soma', '1', 'dend/b', 'conc', 'Concentration of b', 'wave', 0, 500],
        ['soma', '1', 'dend/s', 'conc', 'Concentration of s', 'wave', 0, 1200],
    ],
    moogList = [['soma', '1', 'dend/a', 'conc', 'a Conc', 0, 600 ]]
)
a = moose.element( '/library/osc/kinetics/a' )
b = moose.element( '/library/osc/kinetics/b' )
s = moose.element( '/library/osc/kinetics/s' )
a.diffConst = 0
b.diffConst = 0
a.motorConst = 2e-6
b.motorConst = -2e-6
s.motorConst = -2e-6

rdes.buildModel()
moose.reinit()

rdes.displayMoogli( 1, 250, rotation = 0, azim = -np.pi/2, elev = 0.0 )






[image: Travelling Oscillator molecule a]



[image: Travelling Oscillator molecule b]



[image: Travelling Oscillator molecule]


Above we see a, b, s at a point where the transport has collected the
molecules toward the middle of the cylinder, so the oscillations are large.
Below we see molecule a later, when it has gone past the b and s pools
and so the reaction system is depleted and does not oscillate.


[image: Travelling Oscillator molecule a later.]





Controlling a reaction by a function

ex7.6_func_controls_reac_rate.py

This example illustrates how a function can be used to control a reaction
rate. This kind of calculation is appropriate when we need to link
different kinds of physical processses with chemical reactions, for
example, membrane curvature with molecule accumulation. The use of
functions to modify reaction rates should be avoided in purely chemical
systems since they obscure the underlying chemistry, and do not map
cleanly to stochastic calculations.

In this example we simply have a molecule C that controls the forward
rate of a reaction that converts A to B. C is a function of location
on the cylinder, and is fixed. In more elaborate computations we could
have a function of multiple molecules, some of which could be changing and
others could be buffered.

import numpy as np
import moose
import pylab
import rdesigneur as rd


def makeFuncRate():
    model = moose.Neutral( '/library' )
    model = moose.Neutral( '/library/chem' )
    compt = moose.CubeMesh( '/library/chem/compt' )
    compt.volume = 1e-15
    A = moose.Pool( '/library/chem/compt/A' )
    B = moose.Pool( '/library/chem/compt/B' )
    C = moose.Pool( '/library/chem/compt/C' )
    reac = moose.Reac( '/library/chem/compt/reac' )
    func = moose.Function( '/library/chem/compt/reac/func' )
    func.x.num = 1
    func.expr = "(x0/1e8)^2"
    moose.connect( C, 'nOut', func.x[0], 'input' )
    moose.connect( func, 'valueOut', reac, 'setNumKf' )
    moose.connect( reac, 'sub', A, 'reac' )
    moose.connect( reac, 'prd', B, 'reac' )

    A.concInit = 1
    B.concInit = 0
    C.concInit = 0
    reac.Kb = 1

makeFuncRate()
rdes = rd.rdesigneur(
        turnOffElec = True,
        #This subdivides the 50-micron cylinder into 2 micron voxels
        diffusionLength = 2e-6,
        cellProto = [['somaProto', 'soma', 5e-6, 50e-6]],
        chemProto = [['chem', 'chem']],
        chemDistrib = [['chem', 'soma', 'install', '1' ]],
        plotList = [['soma', '1', 'dend/A', 'conc', 'A conc', 'wave'],
            ['soma', '1', 'dend/C', 'conc', 'C conc', 'wave']],
)
rdes.buildModel()
C = moose.element( '/model/chem/dend/C' )
C.vec.concInit = [ 1+np.sin(x/5.0) for x in range( len(C.vec) ) ]
moose.reinit()
moose.start(10)
rdes.display()





We plot the controlling molecule C and the substrate molecule A as
functions of position, using a waveplot. C remains fixed, and A
decreases with time and space. A is smallest at about voxel 8, where the
reaction rate, as controlled by C, is highest.


[image: Concentration of control molecule C]



[image: Concentration of substrate molecule A]





Multiscale models: single compartment

ex8.0_multiscale_KA_phosph.py

The next few examples are for the multiscale modeling that is the main purpose
of rdesigneur and MOOSE as a whole. These are ‘toy’ examples in that the
chemical and electrical signaling is simplified, but they exhibit dynamics
that are of real interest.

The first example is of a bistable system where the feedback loop comprises of

calcium influx -> chemical activity -> channel modulation -> electrical activity -> calcium influx.

Calcium enters through voltage gated calcium channels, leads to enzyme
activation and phosphorylation of a KA channel, which depolarizes the cell,
so it spikes more, so more calcium enters.

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(
    elecDt = 50e-6,
    chemDt = 0.002,
    chemPlotDt = 0.002,
    # cellProto syntax: ['somaProto', 'name', dia, length]
    cellProto = [['somaProto', 'soma', 12e-6, 12e-6]],
    chemProto = [['./chem/chanPhosphByCaMKII.g', 'chem']],
    chanProto = [
        ['make_Na()', 'Na'],
        ['make_K_DR()', 'K_DR'],
        ['make_K_A()', 'K_A' ],
        ['make_Ca()', 'Ca' ],
        ['make_Ca_conc()', 'Ca_conc' ]
    ],
    # Some changes to the default passive properties of the cell.
    passiveDistrib = [['soma', 'CM', '0.03', 'Em', '-0.06']],
    chemDistrib = [['chem', 'soma', 'install', '1' ]],
    chanDistrib = [
        ['Na', 'soma', 'Gbar', '300' ],
        ['K_DR', 'soma', 'Gbar', '250' ],
        ['K_A', 'soma', 'Gbar', '200' ],
        ['Ca_conc', 'soma', 'tau', '0.0333' ],
        ['Ca', 'soma', 'Gbar', '40' ]
    ],
    adaptorList = [
        [ 'dend/chan', 'conc', 'K_A', 'modulation', 0.0, 70 ],
        [ 'Ca_conc', 'Ca', 'dend/Ca', 'conc', 0.00008, 2 ]
    ],
    # Give a + pulse from 5 to 7s, and a - pulse from 20 to 21.
    stimList = [['soma', '1', '.', 'inject', '((t>5 && t<7) - (t>20 && t<21)) * 1.0e-12' ]],
    plotList = [
        ['soma', '1', '.', 'Vm', 'Membrane potential'],
        ['soma', '1', '.', 'inject', 'current inj'],
        ['soma', '1', 'K_A', 'Ik', 'K_A current'],
        ['soma', '1', 'dend/chan', 'conc', 'Unphosph K_A conc'],
        ['soma', '1', 'dend/Ca', 'conc', 'Chem Ca'],
    ],
)

rdes.buildModel()
moose.reinit()
moose.start( 30 )

rdes.display()





There is only one fundamentally new element in this script:

adaptor List: [source, sourceField, dest, destField, offset, scale]
The adaptor list maps between molecular, electrical or even structural
quantities in the simulation. At present it is linear mapping, in due course
it may evolve to an arbitrary function.

The two adaptorLists in the above script do the following:


[ 'dend/chan', 'conc', 'K_A', 'modulation', 0.0, 70 ]:




Use the concentration of the ‘chan’ molecule in the ‘dend’ compartment,
to modulate the conductance of the ‘K_A’ channel such that the basal
conductance is zero and 1 millimolar of ‘chan’ results in a conductance that is
70 times greater than the baseline conductance of the channel, Gbar.

It is advisable to use the field ‘modulation’ on channels undergoing scaling,
rather than to directly assign the conductance ‘Gbar’. This is because
Gbar is an absolute conductance, and therefore it is scaled to the area of
the electrical segment. This makes it difficult to keep track of. Modulation
is a simple multiplier term onto Gbar, and is therefore easier to work with.


[ 'Ca_conc', 'Ca', 'dend/Ca', 'conc', 0.00008, 2 ]:




Use the concentration of Ca as computed in the electrical model, to assign
the concentration of molecule Ca on the dendrite compartment. There is a
basal level of 80 nanomolar, and every unit of electrical Ca maps to 2
millimolar of chemical Ca.

The arguments in the adaptorList are:



	Source and Dest: Strings. These can be either a molecular or an
electrical object. To identify a molecular object, it should be
prefixed with the name of the chemical compartment, which is one
of dend, spine, psd. Thus dend/chan specifies a molecule
named ‘chan’ sitting in the ‘dend’ compartment.

To identify an electrical object, just pass in its path,
such as ‘.’ or ‘Ca_conc’.

Note that the adaptors do not need to know anything about the
location.  It is assumed that the adaptors do their job wherever
the specified source and dest coexist. There is a subtlety here
due to the different length and time scales. The rule of thumb
is that the adaptor averages whichever one is subdivided more finely.



	Example 1: Molecules are typically spatially partitioned into
short voxels (micron-scale) compared to typical 100-micron
electrical
segments. So an adaptor going from molecules to, say, channel
conductance, would average all the molecular voxels that fit
in the electrical segment.


	Example 2: Electrical activity is typically much faster than
chemical.
So an adaptor going from an electrical entity (Ca computed from
channel opening) to molecules (Chemical Ca concentration) would
average all the time-steps between updates to the molecule.









	Fields: Strings. These are simply the field names on the
objects coupled by the adaptors.


	offset and scale: Doubles. At present the adaptor is just a
straight-line conversion, obeying y = mx + c. The computed
output is y, averaged input is x, offset is c and scale is m.







There is a handy new line to specify cellular passive properties:

passiveDistrib: [path, field, value, field, value, … ],



	path: String. Specifies the object whose parameters are to be changed.


	field: String. Name of the field on the object.


	value: String, that is the value has to be enclosed in quotes. The
value to be assigned to the object.







With these in place, the model behavior is rather neat. It starts out silent,
then we apply 2 seconds of +ve current injection.


[image: Current injection stimuli for multiscale model.]
Current injection stimuli for multiscale model.



The cell fires briskly, and keeps firing even when the current injection
drops to zero.


[image: Firing responses of cell with multiscale signaling.]
Firing responses of cell with multiscale signaling.



The firing of the neuron leads to Ca influx.


[image: Calcium buildup in cell due to firing.]
Calcium buildup in cell due to firing.



The chemical reactions downstream of Ca lead to phosphorylation of the K_A
channel. Only the unphosphorylated K_A channel is active, so the net effect
is to reduce K_A conductance while the Ca influx persists.


[image: Removal of KA channel due to phosphorylation.]
Removal of KA channel due to phosphorylation.



Since the phosphorylated form has low conductance, the cell becomes more
excitable and keeps firing even when the current injection is stopped. It takes
a later, -ve current injection to turn the firing off again.

Suggestions for things to do with the model:



	Vary the adaptor settings, which couple electrical to chemical
signaling and vice versa.


	Play with the channel densities


	Open the chem model in moosegui and vary its parameters too.










Multiscale model of CICR in dendrite triggered by synaptic input

ex8.1_synTrigCICR.py

In this model synaptic input arrives at a dendritic spine, leading to calcium
influx through the NMDA receptor. An adaptor converts this influx to the
concentration of a chemical species, and this then diffuses into the dendrite
and sets off the CICR.

This example models Calcium events in three compartments: dendrite, ER
inside dendrite, and spine. The signaling is a slight change from the
toy model used
in ex7.2_CICR.py. Note how the range of CICR wave propagation
is limited by a domain of the dendrite in which the level of IP3 is elevated.

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(
    turnOffElec = False,
    chemDt = 0.002,
    chemPlotDt = 0.02,
    diffusionLength = 1e-6,
    numWaveFrames = 50,
    useGssa = False,
    addSomaChemCompt = False,
    addEndoChemCompt = True,
    # cellProto syntax: ['ballAndStick', 'name', somaDia, somaLength, dendDia, dendLength, numDendSeg]
    cellProto = [['ballAndStick', 'soma', 10e-6, 10e-6, 2e-6, 40e-6, 4]],
    spineProto = [['makeActiveSpine()', 'spine']],
    chemProto = [['./chem/CICRspineDend.g', 'chem']],
    spineDistrib = [['spine', '#dend#', '10e-6', '0.1e-6']],
    chemDistrib = [['chem', 'dend#,spine#,head#', 'install', '1' ]],
    adaptorList = [
        [ 'Ca_conc', 'Ca', 'spine/Ca', 'conc', 0.00008, 8 ]
    ],
    stimList = [
        ['head0', '0.5', 'glu', 'periodicsyn', '1 + 40*(t>5 && t<6)'],
        ['head0', '0.5', 'NMDA', 'periodicsyn', '1 + 40*(t>5 && t<6)'],
        ['dend#',  'g>10e-6 && g<=31e-6', 'dend/IP3', 'conc', '0.0006' ],
        ],
    plotList = [
        ['head#', '1', 'spine/Ca', 'conc', 'Spine Ca conc'],
        ['dend#', '1', 'dend/Ca', 'conc', 'Dend Ca conc'],
        ['dend#', '1', 'dend/Ca', 'conc', 'Dend Ca conc', 'wave'],
        ['dend#', '1', 'dend_endo/CaER', 'conc', 'ER Ca conc', 'wave'],
        ['soma', '1', '.', 'Vm', 'Memb potl'],
    ],
)
moose.seed( 1234 )
rdes.buildModel()
moose.reinit()
moose.start( 16 )
rdes.display()





The demo illustrates how to specify the range of elevated IP3 in the stimList
using the second argument, which selects a geometric range of electrical
compartments.

['dend#',  'g>10e-6 && g<=31e-6', 'dend/IP3', 'conc', '0.0006' ]





This means to look at all dendrite compartments (first argument), and select
those which are between a geometrical distance g of 10 to 31 microns
from the soma (second argument). The system then
sets the IP3 concentration (third and fourth arguments) to 0.6 uM
(last argument) for all the chemical voxels embedded in these dendrite
compartments.

A note on defining the endo compartments: In cases like this, where the
compartment identity isn’t built into the chemical model definition, we need
a heuristic to decide which compartment is which. The heuristic used in
rdesigneur goes like this:



	Sort chemical compartments in decreasing order by volume


	If the addSomaChemCompt flag is true, they are assigned to
soma, dendrite, spine-head, spine-psd, depending on how many
compartments are specified. If the flag is false, the soma is
omitted.


	If the addEndoChemCompt is true, then alternate compartments are
assigned to the endo_compartment. Here it is
dend, dend_endo, spine-head.
If we had six compartments defined (no soma) it would have been:
dend, dend_endo, spine-head, spine-endo, psd, psd-endo.
The psd-endo doesn’t make a lot of biological sense, though.







When we run this model, we trigger a propagating Ca wave from about voxel
number 16 of 40. It spreads in both directions, and comes to a halt at voxels
10 and 30, which mark the limits of the IP3 elevation zone.


[image: Calcium wave propagation along the dendrite]
Calcium wave propagation along the dendrite



Note two subtle effects on the ER Ca concentration: first, there is a
periodic small influx of calcium at voxel 16 due to synaptic input. Second,
there is a slow restoration of the ER Ca level toward baseline due to
diffusion in the dendrite and the action of pumps to within the ER, and
out of the cell. Note also that the gradient within the ER is actually quite
small, being about a 12% deviation from the resting calcium.


[image: Calcium depletion and buildup in the ER due to CICR wave.]
Calcium depletion and buildup in the ER due to CICR wave.






Multiscale model spanning PSD, spine head and dendrite

ex8.2_multiscale_glurR_phosph_3compt.py

This is another multiscale model on similar lines to 8.0. It is structurally
and computationally more complicated, because the action is distributed between
spines and dendrites, but formally it does the same thing: it turns on and
stays on after a strong stimulus, due to phosphorylation of a (receptor)
channel leading to greater excitability.

calcium influx -> chemical activity -> channel modulation -> electrical activity -> calcium influx.

The model is bistable as long as synaptic input keeps coming along at a basal
rate, in this case 1 Hz.

Here we have two new lines, to do with addition of spines. These are discussed
in detail in a later example. For now it is enough to know that the
spineProto line defines one of the prototype spines to be used to put into
the model, and the spineDistrib line tells the system where to put them,
and how widely to space them.

import moose
import rdesigneur as rd
rdes = rd.rdesigneur(
    elecDt = 50e-6,
    chemDt = 0.002,
    diffDt = 0.002,
    chemPlotDt = 0.02,
    useGssa = False,
    # cellProto syntax: ['ballAndStick', 'name', somaDia, somaLength, dendDia, d
endLength, numDendSegments ]
    cellProto = [['ballAndStick', 'soma', 12e-6, 12e-6, 4e-6, 100e-6, 2 ]],
    chemProto = [['./chem/chanPhosph3compt.g', 'chem']],
    spineProto = [['makeActiveSpine()', 'spine']],
    chanProto = [
        ['make_Na()', 'Na'],
        ['make_K_DR()', 'K_DR'],
        ['make_K_A()', 'K_A' ],
        ['make_Ca()', 'Ca' ],
        ['make_Ca_conc()', 'Ca_conc' ]
    ],
    passiveDistrib = [['soma', 'CM', '0.01', 'Em', '-0.06']],
    spineDistrib = [['spine', '#dend#', '50e-6', '1e-6']],
    chemDistrib = [['chem', '#', 'install', '1' ]],
    chanDistrib = [
        ['Na', 'soma', 'Gbar', '300' ],
        ['K_DR', 'soma', 'Gbar', '250' ],
        ['K_A', 'soma', 'Gbar', '200' ],
        ['Ca_conc', 'soma', 'tau', '0.0333' ],
        ['Ca', 'soma', 'Gbar', '40' ]
    ],
    adaptorList = [
        [ 'psd/chan_p', 'n', 'glu', 'modulation', 0.1, 1.0 ],
        [ 'Ca_conc', 'Ca', 'spine/Ca', 'conc', 0.00008, 8 ]
    ],
    # Syn input basline 1 Hz, and 40Hz burst for 1 sec at t=20. Syn weight
    # is 0.5, specified in 2nd argument as a special case stimLists.
    stimList = [['head#', '0.5','glu', 'periodicsyn', '1 + 40*(t>10 && t<11)']],
    plotList = [
        ['soma', '1', '.', 'Vm', 'Membrane potential'],
        ['#', '1', 'spine/Ca', 'conc', 'Ca in Spine'],
        ['#', '1', 'dend/DEND/Ca', 'conc', 'Ca in Dend'],
        ['#', '1', 'spine/Ca_CaM', 'conc', 'Ca_CaM'],
        ['head#', '1', 'psd/chan_p', 'conc', 'Phosph gluR'],
        ['head#', '1', 'psd/Ca_CaM_CaMKII', 'conc', 'Active CaMKII'],
    ]
)
moose.seed(123)
rdes.buildModel()
moose.reinit()
moose.start( 25 )
rdes.display()





This is how it works:

This is a ball-and-stick model with a couple of spines sitting on the dendrite.
The spines get synaptic input onto NMDARs and gluRs. There is a baseline
input rate of 1 Hz thoughout, and there is a burst at 40 Hz for 1 second at
t = 10s.


[image: Membrane potential responses of cell with synaptic input and multiscale signaling]
Membrane potential responses of cell with synaptic input and multiscale signaling



At baseline, we just have small EPSPs and little Ca influx. A burst of
strong synaptic input causes Ca entry into the spine via NMDAR.


[image: Calcium influx into spine.]
Calcium influx into spine.



Ca diffuses from the spine into the dendrite and spreads. In the graph below
we see how Calcium goes into the 50-odd voxels of the dendrite.


[image: Calcium influx and diffusion in dendrite.]
Calcium influx and diffusion in dendrite.



The Ca influx into the spine
triggers activation of CaMKII and its translocation to the PSD, where
it phosphorylates and increases the conductance of gluR. We have two spines
with slightly different geometry, so the CaMKII activity differs slightly.


[image: Activation of CaMKII and translocation to PSD]
Activation of CaMKII and translocation to PSD



Now that gluR has a greater weight, the baseline synaptic input keeps
Ca trickling in enough to keep the CaMKII active.

Here are the reactions:

Ca+CaM <===> Ca_CaM;    Ca_CaM + CaMKII <===> Ca_CaM_CaMKII (all in
spine head, except that the Ca_CaM_CaMKII translocates to the PSD)

chan ------Ca_CaM_CaMKII-----> chan_p; chan_p ------> chan  (all in PSD)





Suggestions:



	Add GABAR using make_GABA(), put it on soma or dendrite. Stimulate it
after 20 s to see if you can turn off the sustained activation


	Replace the ‘periodicsyn’ in stimList with ‘randsyn’. This gives
Poisson activity at the specified mean frequency. Does the switch
remain reliable?


	What are the limits of various parameters for this switching? You
could try basal synaptic rate, burst rate, the various scaling factors
for the adaptors, the densities of various channels, synaptic weight,
and so on.


	In real life an individual synaptic EPSP is tiny, under a millivolt.
How many synapses would you need to achieve this kind of switching?
You can play with # of synapses by altering the spacing between
spines as the third argument of spineDistrib.










Multiscale model in which spine geometry changes due to signaling

ex8.3_spine_vol_change.py

This model is very similar to 8.2. The main design difference is that
adaptor, instead of just modulating the gluR conductance, scales the
entire spine cross-section area, with all sorts of electrical and chemical
ramifications. There are a lot of plots, to illustrate some of these outcomes.

import moose
import rdesigneur as rd
rdes = rd.rdesigneur(
    elecDt = 50e-6,
    chemDt = 0.002,
    diffDt = 0.002,
    chemPlotDt = 0.02,
    useGssa = False,
    stealCellFromLibrary = True, # Simply move library model to use for sim
    cellProto = [['ballAndStick', 'soma', 12e-6, 12e-6, 4e-6, 100e-6, 2 ]],
    chemProto = [['./chem/chanPhosph3compt.g', 'chem']],
    spineProto = [['makeActiveSpine()', 'spine']],
    chanProto = [
        ['make_Na()', 'Na'],
        ['make_K_DR()', 'K_DR'],
        ['make_K_A()', 'K_A' ],
        ['make_Ca()', 'Ca' ],
        ['make_Ca_conc()', 'Ca_conc' ]
    ],
    passiveDistrib = [['soma', 'CM', '0.01', 'Em', '-0.06']],
    spineDistrib = [['spine', '#dend#', '50e-6', '1e-6']],
    chemDistrib = [['chem', '#', 'install', '1' ]],
    chanDistrib = [
        ['Na', 'soma', 'Gbar', '300' ],
        ['K_DR', 'soma', 'Gbar', '250' ],
        ['K_A', 'soma', 'Gbar', '200' ],
        ['Ca_conc', 'soma', 'tau', '0.0333' ],
        ['Ca', 'soma', 'Gbar', '40' ]
    ],
    adaptorList = [
        # This scales the psdArea of the spine by # of chan_p. Note that
        # the cross-section area of the spine head is identical to psdArea.
        [ 'psd/chan_p', 'n', 'spine', 'psdArea', 0.1e-12, 0.01e-12 ],
        [ 'Ca_conc', 'Ca', 'spine/Ca', 'conc', 0.00008, 8 ]
    ],
    # Syn input basline 1 Hz, and 40Hz burst for 1 sec at t=20. Syn wt=10
    stimList = [['head#', '10','glu', 'periodicsyn', '1 + 40*(t>10 && t<11)']],
    plotList = [
        ['soma', '1', '.', 'Vm', 'Membrane potential'],
        ['#', '1', 'spine/Ca', 'conc', 'Ca in Spine'],
        ['#', '1', 'dend/DEND/Ca', 'conc', 'Ca in Dend'],
        ['head#', '1', 'psd/chan_p', 'n', 'Amount of Phospho-chan'],
        ['head#', '1', 'spine/CaMKII', 'conc', 'Conc of CaMKII in spine'],
        ['head#', '1', '.', 'Cm', 'Capacitance of spine head'],
        ['head#', '1', '.', 'Rm', 'Membrane res of spine head'],
        ['head#', '1', '.', 'Ra', 'Axial res of spine head'],
        ['head#', '1', 'glu', 'Gbar', 'Conductance of gluR'],
        ['head#', '1', 'NMDA', 'Gbar', 'Conductance of NMDAR'],
    ]
)
moose.seed(123)
rdes.buildModel()
moose.reinit()
moose.start( 25 )
rdes.display()





The key adaptor line is as follows:

[ 'psd/chan_p', 'n', 'spine', 'psdArea', 0.1e-12, 0.01e-12 ]

Here, we use the phosphorylated chan_p molecule in the PSD as a proxy for
processes that control spine size. We operate on a special object called
spine which manages many aspects of spines in the model (see below). Here
we control the psdArea, which defines the cross-section area of the spine
head and by extension of the PSD too. We keep a minimum spine area of 0.1 um^2,
and a scaling factor of 0.01um^2 per phosphorylated molecule.

The reaction system is identical to the one in ex8.2:

Ca+CaM <===> Ca_CaM;    Ca_CaM + CaMKII <===> Ca_CaM_CaMKII (all in
spine head, except that the Ca_CaM_CaMKII translocates to the PSD)

chan ------Ca_CaM_CaMKII-----> chan_p; chan_p ------> chan  (all in PSD)





Rather than list all the 10 plots, here are a few to show what is going on.

First, just the spiking activity of the cell. Here the burst of activity is
followed by a few seconds of enhanced synaptic weight, followed by subthreshold
EPSPs:


[image: Membrane potential and spiking.]
Membrane potential and spiking.



Then, we fast-forward to the amount of chan_p which is the molecule that
controls spine size scaling:


[image: Molecule that controles spine size]
Molecule that controles spine size



This causes some obvious outcomes. One of them is to increase the synaptic
conductance of the glutamate receptor. The system assumes that the conductance
of all channels in the PSD scales linearly with the psdArea.


[image: Conductance of glutamate receptor]
Conductance of glutamate receptor



Here is one of several non-intuitive outcomes. Because the spine volume has
increased, the concentration of molecules in the spine is diluted out. So
the concentration of active CaMKII actually falls when the spine gets bigger.
In a more detailed model, this would be a race between the increase in spine
size and the time taken for diffusion and further reactions to replenish
CaMKII. In the current model we don’t have a diffusive coupling of CaMKII to
the dendrite, so this replenishment doesn’t happen.


[image: Concentration of CaMKII in the spine]
Concentration of CaMKII in the spine



In the simulation we display several other electrical and chemical properties
that change with spine size. The diffusion properties also change since the
cross-section areas are altered. This is harder to visualize but has large
effects on coupling to the dendrite,
especially if the shaftDiameter is the parameter scaled by the signaling.

Suggestions:



	The Spine class (instance: spine) manages several possible scaling
targets on the spine geometry: shaftLength, shaftDiameter,
headLength, headDiameter, psdArea, headVolume, totalLength. Try them
out. Think about mechanisms by which molecular concentrations might
affect each.


	When volume changes, we assume that the molecular numbers stay
fixed, so concentration changes. Except for buffered molecules, where
we assume concentration remains fixed. Use this to design a bistable
simply relying on molecules and spine geometry terms.


	Even more interesting, use it to design an oscillator. You could look
at Bhalla, BiophysJ 2011 for some ideas.










Morphology: Load .swc morphology file and view it

ex9.0_load_neuronal_morphology_file.py

Here we build a passive model using a morphology file in the .swc file
format (as used by NeuroMorpho.org). The morphology file is predefined
for Rdesigneur and resides in the directory ./cells. We apply a
somatic current pulse, and view the somatic membrane potential in a
plot, as before. To make things interesting we display the morphology in
3-D upon which we represent the membrane potential as colors.

import sys
import moose
import rdesigneur as rd

if len( sys.argv ) > 1:
    fname = sys.argv[1]
else:
    fname = './cells/h10.CNG.swc'
rdes = rd.rdesigneur(
    cellProto = [[fname, 'elec']],
    stimList = [['soma', '1', '.', 'inject', 't * 25e-9' ]],
    plotList = [['#', '1', '.', 'Vm', 'Membrane potential'],
            ['#', '1', 'Ca_conc', 'Ca', 'Ca conc (uM)']],
    moogList = [['#', '1', '.', 'Vm', 'Soma potential']]
)
rdes.buildModel()
moose.reinit()
rdes.displayMoogli( 0.001, 0.1, rotation = 0.02 )





Here the new concept is the cellProto line, which loads in the specified
cell model:

`[ filename, cellname ]`





The system recognizes the filename extension and builds a model from the
swc file. It uses the cellname elec in this example.

We use a similar line as in the reaction-diffusion example, to build up
a Moogli display of the cell model:

`moogList = [['#', '1', '.', 'Vm', 'Soma potential']]`





Here we have:

# : the path to use for selecting the compartments to display.
This wildcard means use all compartments.
1 : The expression to use for the compartments. Again, `1` means use
all of them.
. : Which object in the compartment to display. Here we are using the
compartment itself, so it is just a dot.
Vm : Field to display
Soma potential : Title for display.






[image: 3-D display for passive neuron]
3-D display for passive neuron



Suggestions:



	The tutorial directory already has a number of pre-loaded files from
NeuroMorpho. Pass them in to ex9.0 on the command line:

python ex9.0_load_neuronal_morphology_file.py <morpho.swc>



	Grab other morphology files from NeuroMorpho.org,  try them out.










Build an active neuron model by putting channels into a morphology file

ex9.1_chans_in_neuronal_morph.py

Here we load in a morphology file and distribute voltage-gated ion channels
over the neuron. The voltage-gated channels are obtained from a
number of channelML files, located in the ./channels subdirectory.
Since we have a spatially extended neuron, we need to specify the
spatial distribution of channel densities too.

import moose
import rdesigneur as rd
rdes = rd.rdesigneur(
    chanProto = [
        ['./chans/hd.xml'],
        ['./chans/kap.xml'],
        ['./chans/kad.xml'],
        ['./chans/kdr.xml'],
        ['./chans/na3.xml'],
        ['./chans/nax.xml'],
        ['./chans/CaConc.xml'],
        ['./chans/Ca.xml']
    ],
    cellProto = [['./cells/h10.CNG.swc', 'elec']],
    chanDistrib = [ \
        ["hd", "#dend#,#apical#", "Gbar", "50e-2*(1+(p*3e4))" ],
        ["kdr", "#", "Gbar", "p < 50e-6 ? 500 : 100" ],
        ["na3", "#soma#,#dend#,#apical#", "Gbar", "850" ],
        ["nax", "#soma#,#axon#", "Gbar", "1250" ],
        ["kap", "#axon#,#soma#", "Gbar", "300" ],
        ["kap", "#dend#,#apical#", "Gbar",
            "300*(H(100-p*1e6)) * (1+(p*1e4))" ],
        ["Ca_conc", "#", "tau", "0.0133" ],
        ["kad", "#soma#,#dend#,#apical#", "Gbar", "50" ],
        ["Ca", "#", "Gbar", "50" ]
    ],
    stimList = [['soma', '1', '.', 'inject', '(t>0.02) * 1e-9' ]],
    plotList = [['#', '1', '.', 'Vm', 'Membrane potential'],
            ['#', '1', 'Ca_conc', 'Ca', 'Ca conc (uM)']],
    moogList = [['#', '1', 'Ca_conc', 'Ca', 'Calcium conc (uM)', 0, 120],
        ['#', '1', '.', 'Vm', 'Soma potential']]
)

rdes.buildModel()

moose.reinit()
rdes.displayMoogli( 0.0002, 0.052 )





Here we make more extensive use of two concepts which we’ve already seen
from the single compartment squid model:


	chanProto: This defines numerous channels, each of which is of the
form:

[ filename ]

or

[ filename, channelname ]

or

[ channelFunction(), channelname ]





If the channelname is not specified the system uses the last part of
the channel name, before the filetype suffix.


	chanDistrib: This defines the spatial distribution of each channel
type. Each line is of a form that should be familiar now:

[channelname, region_in_cell, parameter, expression_string]






	The channelname is the name of the prototype from chanproto. This
is usually an ion channel, but in the example above you can also see
a calcium concentration pool defined.


	The region_in_cell is typically defined using wildcards, so that
it generalizes to any cell morphology. For example, the plain
wildcard # means to consider all cell compartments. The wildcard
#dend# means to consider all compartments with the string
dend somewhere in the name. Wildcards can be comma-separated, so
#soma#,#dend# means consider all compartments with either soma or
dend in their name. The naming in MOOSE is defined by the model file.
Importantly, in .swc files MOOSE generates names that respect the
classification of compartments into axon, soma, dendrite, and apical
dendrite compartments respectively. SWC files generate compartment
names such as:

soma_<number>
dend_<number>
apical_<number>
axon_<number>









where the number is automatically assigned by the reader. In order to
select all dendritic compartments, for example, one would use “#dend#”
where the “#” acts as a wildcard to accept any string. - The
parameter is usually Gbar, the channel conductance density in S/m^2.
If Gbar is zero or less, then the system economizes by not
incorporating this channel mechanism in this part of the cell.
Similarly, for calcium pools, if the tau is below zero then the
calcium pool object is simply not inserted into this part of the cell. -
The expression_string defines the value of the parameter, such as
Gbar. This is typically a function of position in the cell. The
expression evaluator knows about several parameters of cell geometry.
All units are in metres:


	x, y and z coordinates.


	g, the geometrical distance from the soma


	p, the path length from the soma, measured along the dendrites.


	dia, the diameter of the dendrite.


	L, The electrotonic length from the soma (no units).




Along with these geometrical arguments, we make liberal use of the
ternary expressions like p < 50e-6 ? 500 : 100 or multiplying a channel
density with a logical function or Heaviside function H(x) to set up the
channel distributions. The
expression evaluator also knows about pretty much all common algebraic,
trignometric, and logarithmic functions, should you wish to use these.

Also note the two Moogli displays. The first is the calcium
concentration. The second is the membrane potential in each compartment.
Easy!


[image: 3-D display for active neuron]
3-D display for active neuron



Suggestions:



	Try another morphology file.


	Try different channel distributions by editing the chanDistrib lines.


	There are numerous predefined channels available within Rdesigneur.
These can be defined using the following chanProto options:

['make_HH_Na()', 'HH_Na']
['make_HH_K_DR()', 'HH_K']
['make_Na()', 'Na']
['make_K_DR()', 'K_DR']
['make_K_A()', 'K_A']
['make_K_AHP()', 'K_AHP']
['make_K_C()', 'K_C']
['make_Ca()', 'Ca']
['make_Ca_conc()', 'Ca_conc']
['make_glu()', 'glu']
['make_GABA()', 'GABA']





Then the chanDistrib can refer to these channels instead.



	Deliver stimuli on the dendrites rather than the soma.










Build a spiny neuron from a morphology file and put active channels in it.

ex9.2_spines_in_neuronal_morpho.py

This model is one step elaborated from the previous one, in that we now
also have dendritic spines. MOOSE lets one decorate a bare neuronal
morphology file with dendritic spines, specifying various geometric
parameters of their location. As before, we use an swc file for the
morphology, and the same ion channels and distribution.

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(
    chanProto = [
        ['./chans/hd.xml'],
        ['./chans/kap.xml'],
        ['./chans/kad.xml'],
        ['./chans/kdr.xml'],
        ['./chans/na3.xml'],
        ['./chans/nax.xml'],
        ['./chans/CaConc.xml'],
        ['./chans/Ca.xml']
    ],
    cellProto = [['./cells/h10.CNG.swc', 'elec']],
    spineProto = [['makeActiveSpine()', 'spine']],
    chanDistrib = [
        ["hd", "#dend#,#apical#", "Gbar", "50e-2*(1+(p*3e4))" ],
        ["kdr", "#", "Gbar", "p < 50e-6 ? 500 : 100" ],
        ["na3", "#soma#,#dend#,#apical#", "Gbar", "850" ],
        ["nax", "#soma#,#axon#", "Gbar", "1250" ],
        ["kap", "#axon#,#soma#", "Gbar", "300" ],
        ["kap", "#dend#,#apical#", "Gbar",
            "300*(H(100-p*1e6)) * (1+(p*1e4))" ],
        ["Ca_conc", "#", "tau", "0.0133" ],
        ["kad", "#soma#,#dend#,#apical#", "Gbar", "50" ],
        ["Ca", "#", "Gbar", "50" ]
    ],
    spineDistrib = [['spine', '#dend#,#apical#', '20e-6', '1e-6']],
    stimList = [['soma', '1', '.', 'inject', '(t>0.02) * 1e-9' ]],
    plotList = [['#', '1', '.', 'Vm', 'Membrane potential'],
            ['#', '1', 'Ca_conc', 'Ca', 'Ca conc (uM)']],
    moogList = [['#', '1', 'Ca_conc', 'Ca', 'Calcium conc (uM)', 0, 120],
        ['#', '1', '.', 'Vm', 'Soma potential']]
)

rdes.buildModel()

moose.reinit()
rdes.displayMoogli( 0.0002, 0.023 )





Spines are set up in a familiar way: we first define one (or more)
prototype spines, and then distribute these around the cell. Here is the
prototype string:

[spine_proto, spinename]





spineProto: This is typically a function. One can define one’s own,
but there are several predefined ones in rdesigneur. All these define a
spine with the following parameters:


	head diameter 0.5 microns


	head length 0.5 microns


	shaft length 1 micron


	shaft diameter of 0.2 microns


	RM = 1.0 ohm-metre square


	RA = 1.0 ohm-meter


	CM = 0.01 Farads per square metre.




Here are the predefined spine prototypes:


	makePassiveSpine(): This just makes a passive spine with the
default parameters


	makeExcSpine(): This makes a spine with NMDA and glu receptors, and
also a calcium pool. The NMDA channel feeds the Ca pool.


	makeActiveSpine(): This adds a Ca channel to the exc_spine. and
also a calcium pool.




The spine distributions are specified in a familiar way for the first
few arguments, and then there are multiple (optional) spine-specific
parameters:

[spinename, region_in_cell, spacing, spacing_distrib, size,
size_distrib, angle, angle_distrib ]

Only the first two arguments are mandatory.


	spinename: The prototype name


	region_in_cell: Usual wildcard specification of names of
compartments in which to put the spines.


	spacing: Math expression to define spacing between spines. In the
current implementation this evaluates to
1/probability_of_spine_per_unit_length. Defaults to 10 microns.
Thus, there is a 10% probability of a spine insertion in every
micron. This evaluation method has the drawback that it is possible
to space spines rather too close to each other. If spacing is zero or
less, no spines are inserted.


	spacing_distrib: Math expression for distribution of spacing. In
the current implementation, this specifies the interval at which the
system samples from the spacing probability above. Defaults to 1
micron.


	size: Linear scale factor for size of spine. All dimensions are
scaled by this factor. The default spine head here is 0.5 microns in
diameter and length. If the scale factor were to be 2, the volume
would be 8 times as large. Defaults to 1.0.


	size_distrib: Range for size of spine. A random number R is
computed in the range 0 to 1, and the final size used is
size + (R - 0.5) * size_distrib. Defaults to 0.5


	angle: This specifies the initial angle at which the spine sticks
out of the dendrite. If all angles were zero, they would all point
away from the soma. Defaults to 0 radians.


	angle_distrib: Specifies a random number to add to the initial
angle. Defaults to 2 PI radians, so the spines come out in any
direction.





[image: 3-D display for spiny active neuron]
3-D display for spiny active neuron



Suggestions:



	Try different spine settings. Warning: if you put in too many spines
it will take much longer to load and run!


	Try different spine geometry layouts.


	See if you can deliver the current injection to the spine. Hint: the
name of the spine compartments is ‘head#’ where # is the index of the
spine.










Place spines in a spiral along a dendrite

ex9.3_spiral_spines.py

Just for fun. Illustrates how to place spines in a spiral around the dendrite.
For good measure the spines get bigger the further they are from the soma.

Note that the uniform spacing of spines is signified
by the negative minSpacing term, the fourth argument to spineDistrib.

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(
    cellProto = [['ballAndStick', 'elec', 10e-6, 10e-6, 2e-6, 300e-6, 50]],
    spineProto = [['makePassiveSpine()', 'spine']],
    spineDistrib = [['spine', '#dend#', '3e-6', '-1e-6', '1+p*2e4', '0', 'p*6.28e7', '0']],
    stimList = [['soma', '1', '.', 'inject', '(t>0.02) * 1e-9' ]],
    moogList = [['#', '1', '.', 'Vm', 'Soma potential']]
)
rdes.buildModel()
moose.reinit()
rdes.displayMoogli( 0.0002, 0.025, 0.02 )





Note that the uniform spacing of spines is signified
by the negative minSpacing term, the fourth argument to spineDistrib.

spineDistrib = [[‘spine’, ‘#dend#’, ‘3e-6’, ‘-1e-6’, ‘1+p*2e4’, ‘0’, ‘p*6.28e7’, ‘0’]]


[image: 3-D display of spines in a spiral]
3-D display of spines in a spiral



Suggestions:



	Play with expressions for spine size and angular placement.


	See what happens if the segment size gets smaller than the
spine spacing.












Rdesigneur command reference

Rdesigneur is a Python class used to build multiscale neuronal models
involving Reaction-Diffusion and Electrical SIGnaling in NEURons.
The stages in its use are illustrated in the following dummy code snippet:

# 1. Load in the libraries
import moose
import rdesigneur as rd

# 2. Define the arguments. This does most of the model setup
rdes = rd.rdesigneur( args )

# 3. Tweak parameters of model building-blocks, for example:
a = moose.element( '/library/chem/kinetics/a' )
a.diffConst = 0

# 4. Build the model
rdes.buildModel()

# 5. Tweak values in the constructed model, for example
bv = moose.vec( '/model/chem/dend/b' )
bv[0].concInit *= 2

# 6. Run the model
moose.reinit()
moose.start( runtime )

# 7. Display and/or save model output
rdes.dispay()





The rdesigneur arguments are provided in the standard Python keyword-argument
format. For example:

rdes = rd.rdesigneur(
    turnOffElec = True,
    chemDt = 0.05,
    ...
    chemProto = [ ['makeChemOscillator()', 'osc'] ],
    ...
    plotList = [ rd.rplot( relpath = 'dend/a', field = 'conc', title = '[a] (uM)' ) ],
    ...
)





Each argument has a default, hence even
building rdesigneur without arguments will produce a correct, if not very
interesting model.

Rdesigneur and Prototypes: Rdesigneur assembles models by taking prototype
objects and replicating them into the model. These prototypes can be chemical
reaction systems, ion channels, spines, or entire neurons. All the prototypes
are placed under the MOOSE object /library. When building the model, it looks
up prototypes by name and places them into the resulting model. The rdesigneur
constructor (step 2 above) builds all these prototypes. Once they are in place,
the BuildModel() method (step 4 above) performs the assembly.

Below we provide the usage of the argument list to rdesigneur, which
does most of the model specification.


turnOffElec

Type: bool

Default: False

Use: Turns off electrical calculations. It is a good idea to set this flag
True if the model doesn’t use electrical calculations, it can make the
calculations many times faster.




useGssa

Type: bool

Default: True

Use: Turns on the use of the Gillespie Stochastic Simulation Algorithm (GSSA)
in dendritic spines. Advisable in models where you worry about stochasticity.
Also it typically makes the simulations run faster.




combineSegments

Type: bool

Default: True

Use: Flag to pass on to the NeuroML loader to tell it to combine segments.




stealCellFromLibrary

Type: bool

Default: False

Use: Use the prototype loaded-in neuron itself for the main simulation run,
removing it from the available prototypes.
It is advisable to set this to True if the model is large and complicated. It
saves memory and in some cases runs more reliably.




verbose

Type: bool

Default: True

Use: Tell rdesigneur to be garrulous when loading and reporting status and
errors.




addSomaChemCompt

Type: bool

Default: False

Use: Specify that the largest chemical compartment (by volume) should be
assigned to the cell soma. Most multiscale models don’t bother with a soma
chemical compartment, and are happy with dendrite and possibly spines, so this
defaults to False.




addEndoChemCompt

Type: bool

Default: False

Use: Specify that each of the chemical compartments should contain an internal
endo-compartment. This is typically used for the endoplasmic reticulum in
models of calcium-induced calcium release (CICR), however, the
EndoCompartments are quite general and can be used for defining chemistry and
transport involving any membrane-bound organelle. In MOOSE, when you create
an EndoCompartment it must be surrounded by a regular compartment, and a
voxel of the EndoCompartment appears within every voxel of the surrounding
compartment.




diffusionLength

Type: double

Default: 2e-6 (2 microns)

Use: This sets the spatial discretization length of reaction-diffusion models.
If the diffusion constant is D (in micron^2/sec), then the diffusionLength
should be less than D microns for signaling events that take 1 second. If the
signaling is faster, diffusionLength should be smaller.




temperature

Type: double

Default: 32 degrees Celsius

Use: ChannelML definitions of ion channels use this value to modulate
their kinetics.




chemDt

Type: double

Default: 0.1 s

Use: Specify timestep for chemical computations. Note that internally the MOOSE
solver will probably use finer or adaptive timesteps. The chemDt just ensures
that all the chemical values in different solvers will be synchronized at
this interval. You will want to make this somewhat smaller (0.01 to 0.001 s)
in the case of multiscale simulations with tight coupling between electrical
and signaling events.




diffDt

Type: double

Default: 0.01 s

Use: Specify timestep for diffusion computations, as well as cross-compartment
reactions and molecular transport across membrane pores. This timestep
does not apply to voltage-gated and synaptic channels handled by the electrical
solver, for that use elecDt.
You will want to make this somewhat smaller (0.01 to 0.001 s)
in the case of multiscale simulations with tight coupling between electrical
and signaling events.




elecDt

Type: double

Default: 50e-6 s

Use: Specify timestep for electrical calculations, used by the HSolver in
MOOSE to carry out calculations using Gaussian Elimination and the Crank-
Nicolson method for ion channels. This works well for slower
channels, but if you have particularly fast channel kinetics you may wish to
use elecDt of 10 to 20 us.




chemPlotDt

Type: double

Default: 1 s

Use: Timestep for storing and plotting chemical values.




elecPlotDt

Type: double

Default: 100e-6 s

Use: Timestep for storing and plotting electrical values.




funcDt

Type: double

Default: 100e-6 s

Use: Timestep for performing Function calculations for inputs and stimuli,
for electrical models. Only used for electrical models, i.e.,
when turnOffElec is False. Otherwise the system uses a funcDt equal to
the chemDt.




cellProto

Type: List of lists

Default: [] (empty list). This generates the Hodgkin-Huxley configuration where
length and diameter are 500 microns, RM = 0.333, RA = 3000, and
CM = 0.01 F/m^2, but no active channels.

Use: This defines which neuronal model specification to use. There are many
options here:



	zero args: make standard soma corresponding to the Hodgkin-Huxley
model. length and diameter are both 500 um.


	[name, library_proto_name]: uses library prototype object.


	[fname.suffix, cellname ]: Loads cell from file. The file type
is identified by the suffix, and can be :



	.nml: NeuroML


	.xml: NeuroML


	.swc: NeuroMorpho.org format for cellular morphology


	.p: Genesis format









	[moose<Classname>, cellname]: Makes prototype from MOOSE class.


	[funcname, cellname]: Calls named function with specified
name of cell to be made.


	[path, cellname]: Copies path to library as proto


	[libraryName, cellname]: Renames library entry as prototype.


	[somaProto, name, somaDia=5e-4, somaLen=5e-4]
Creates a soma with optional specified diameter and length. Defaults
as shown.


	[ballAndStick,name, somaDia=10e-6, somaLen=10e-6,
dendDia=4e-6, dendLen=200e-6, numDendSeg=1]
Creates a ball-and-stick with required type and name arguments.
The remaining arguments are optional. Defaults as shown.










spineProto

Type: List of lists

Default: [] (empty list). This does not define any spines.

Use: Each list entry should be a list containing two strings: source and
destination. The source defines how to build the prototype. The
destination specifies its name.
If the requested destination is an object that already exists in the library,
the system doesn’t do anything.

The source can be any of:



	functionName(): Call specified Python function, with the destination
as the argument. The function is expected to build a prototype of the
requested name on ‘/library’. The following utility functions are
built-in:



	makePassiveSpine(): Makes a 2-compartment spine with the following
parameters:



	shaft name: shaft


	shaft length = 1 micron


	shaft diameter = 0.2 micron


	head name: head


	head length = 0.5 micron


	head diameter = 0.5 micron


	RM = 1.0


	RA = 1.0


	CM = 0.01









	makeExcSpine(): Same as above but adds in glutamate and NMDA
receptors and a calcium pool. The calcium pool has a pumping tau of
13.333 ms, and is present in the volume of the spine head.
Both receptors have conductances in the form of dual-exponential
alpha functions, with a separate opening and closing tau.
The glutamate receptor has the following parameters:



	name: glu


	opening tau: 2 ms


	closing tau: 9 ms


	Gbar, ie, conductance per unit area: 200 Siemens/m^2







The NMDA receptor has the following parameters:



	name: NMDA


	opening tau: 20 ms


	closing tau: 20 ms


	Gbar, ie, conductance per unit area: 80 Siemens/m^2









	makeActiveSpine(): Same as above, but also adds in a voltage-gated
calcium channel with Gbar = 10 Siemens/m^2 into the spine head.









	Path of existing object in memory, such as /library/source. In this
case rdesigneur renames the object to /library/destination.


	A filename, with any of the suffices:



	.nml: NeuroML


	.xml: NeuroML


	.swc: NeuroMorpho.org format for cellular morphology


	.p: Genesis format









	moose::SymCompartment: Make a SymCompartment for the spine. Deprecated.


	moose::Compartment: Make a Compartment for the spine. Deprecated.










chanProto

Type: List of lists

Default: [] (empty list). The empty list does not define any channels.

Use: Each list entry must have a string for the source. It can optionally
have a second string for the destination, which is the name to give to the
source channel when it is constructed on /library.

The following options are available for specifying the source for
making channel prototypes:



	Filepath. This is relative to the working directory. The following
file types are known:



	xml: ChannelML, which is a subset of NeuroML


	nml: ChannelML, which is a subset of NeuroML







Channels in thse formats are available from Open Source Brain [http://www.opensourcebrain.org/],



	Predefined channel prototypes, available as functions within
rdesigneur. This is indicated by the use of braces after the name.
The following prototypes are currently available:



	make_HH_Na(): Make the classical Hodgkin-Huxley Na channel, with
kinetics scaled to SI units.


	make_HH_K(): Classical HH delayed rectifier K channel.


	make_Na(): Hippocampal pyramidal Na channel from Traub 1991.


	make_K_DR(): Hippocampal pyramidal K delayed rectifier channel
from Traub 1991.


	make_K_A(): Hippocampal pyramidal A-type K channel from Traub
1991.


	make_Ca_conc(): A calcium pool with tau 13.333 ms. This is
required for the calcium dynamics of several channels.


	make_Ca(): Voltage-gated Calcium channel, based on Traub 1991. It
requires the Ca_conc.


	make_K_AHP: Voltage and calcium-gated afterhyperpolarization-
activated K channel, from Traub 1991. Note that this channel
requires the presence of the Ca_conc.


	make_K_C: Voltage and calcium-dependent K channel from Traub 1991.
This channel requires the presence of the Ca_conc.


	make_glu(): Glutamate receptor in the form of dual-exponential
alpha functions, with a separate opening (2ms) and closing (9ms)
tau. Reversal potential = 0 mV.


	make_GABA(): GABA receptor in the form of dual-exponential
alpha functions, with a separate opening (4ms) and closing (9ms)
tau. Reversal potential = -65 mV.













	User-defined channel definition functions.
These can be from external Python files, using the
full path to the file name minus the suffix. The specific function
within it is then specified. For example,

chanProto = [
    ['/home/user/models/channelProtos.make_K_AHP()', 'K_AHP']
]


















chemProto

Type: List of lists

Default: [] (empty list). The empty list does not define any chemical systems.

Use: Each list entry must have a string for the source. It can optionally
have a second string for the destination, which is the name to give to the
source chemical system when it is constructed on /library.

The following options are available for specifying the source for
making channel prototypes:



	Filepath. This is relative to the working directory. The following
file types are known:



	xml: SBML


	sbml: SBML


	.g: GENESIS Kinetikit (kkit.g) format.







Channels in thse formats are available from the DOQCS [https://doqcs.ncbs.res.in/] database,
and from the BioModels [https://www.ebi.ac.uk/biomodels-main/] database,



	Predefined functions. At present only one such function is available,
makeChemOscillator()


	
	User-defined functions.

	These can be from external Python files, using the
full path to the file name minus the suffix. The specific function
within it is then specified. For example,

chemProto = [
    ['/home/user/models/chemProtos.make_Osc()', 'osc']
]











	Pool objects. These are created on the fly using the form

chemProto = [['moose:Pool', 'a']]















passiveDistrib

Type: List of lists

Default: [] (empty list). Does nothing.

Use; This is for adjusting the passive properties of the neuron. Each list
entry is a list of strings, of the form:

[path, field, expr, [field, expr]...]





Here the path is a MOOSE wildcard path, which defines one or more objects.
Briefly, the ‘#’ character specifies any string, and the double ‘##’ specifies
any string at any level in the tree. For example, to specify any compartment
with the string ‘dend’ you would use ‘#dend#’ and to specify any object
anywhere in the tree you would use ‘##’.

The field can be any one of the following:



	RM: Membrane resistivity, in ohms.m^2


	RA: Axial resistivity, in ohms.m


	CM: Membrane specific capacitance, in Farads/m^2


	Rm: Absolute membrane resistance of that segment, in ohms.


	Ra: Absolute axial resistance of that segment, in ohms.


	Cm: Absolute membrane capacitance of that segment, in Farads.


	Em: Membrane resting potential, in Volts.


	initVm: Initial value to set the membrane potential, in Volts.







The expr is an expression string that is evaluated to give the desired value
for the field. This can be as simple as the value itself, but can be a much
more interesting function of geometrical properties of the cell. The geometry
arguments available to the expr include:



	p: Path length in metres from the soma, measured along the dendrite.


	g: Geometrical distance from the soma.


	L: Number of electronic length constants from the soma


	len: length of the segment of dendrite


	dia: diameter of the segment of dendrite


	maxP: Maximum path length of any dendrite in the cell.


	maxG: Maximum geometrical distance of any dendrite from soma


	maxL: Maximum electrotonic distance of any dendrite from the soma







Putting these together, here is an example of using the passiveDistrib:

passiveDistrib = [
    [ 'soma', 'RM', '1.0', 'CM', '0.02' ],
    [ '#dend#', 'RM', '1.5 + 0.5*(p>200e-6)', 'CM', '0.01' ],
]





This means set the soma RM to 1.0, and CM to 0.02, leaving the RA as the
default. The scaled value for Rm, Ra, and Cm are computed by scaling
these terms according to the soma dimensions.
For all dendrite compartments, set the RM to 1.5 provided it is closer than
200 microns dendritic path length from the soma, and set the RM to 2.0 for
all dendritic compartments further than this.
Finally, for all dendrite compartments, set CM to 0.01. Note that again
the absolute Rm and Cm will be scaled according to the local compartment
dimensions.




spineDistrib

Type: List of lists

Default: [] (empty list). Does nothing.

Use: This is for inserting dendritic spines onto the neuron.
Each entry is a list of strings, of the form:

[proto, path, [spacing, minSpacing, size, sizeDistrib, angle, angleDistrib]]





Of these, the name and the path are required entries, and the remainder
can be provided in pairs. The defaults for these entries are:

['spine', '#dend#,#apical#', '10e-6', '1e-6', '1', '0.5', '0', '6.2832' ]





The interpretation of the arguments is as follows:



	name: This is the name of the spine prototype.


	path: The wildcard path of compartments on which to insert the spines.
In the example above, ‘#dend#,#apical#’ means all compartments with
the strings dend or apical in their names.


	spacing: The mean spacing between spines. At present the spines are placed
with a Poisson distribution. This is a math expression with the same
terms as used for the passive distribution, so that the spine spacing
can be a function of spine position along the dendritic tree. The form
of this expression is shown again below.


	minSpacing: The minimum spacing, and the increment along which the
Poisson samples are taken to decide if a spine should be added.
In case minSpacing is negative, the system places spines with uniform
spacing along the dendritic segment. If
segment length < 0.5 * spacing
then the system falls back onto Poisson samples so that finely
subdivided dendrites don’t miss out on spines altogether.


	size: Scale factor for size from the prototype spine. All dimension of
the spine are scaled by this number: shaft length, shaft diameter,
head length and head diameter. This is a math expression, as shown below.


	sizeDistrib: The range of distribution of sizes. This is a linear
distribution centered around the defined size.


	angle: The initial angle of the first spine on each dendrite compartment,
in radians. This is a math expression, as shown below.


	angleDistrib: The range of of angles around this initial angle.
The angle will be chosen from a linear distribution centered around the
centre angle, +/- angleDistrib.







The expression used for spacing, size, and angle is of the form of an
an expression string that is evaluated to give the desired value
for the field. This can be as simple as the value itself, but can be a much
more interesting function of geometrical properties of the cell. The geometry
arguments available to the expr include:



	p: Path length in metres from the soma, measured along the dendrite.


	g: Geometrical distance from the soma.


	L: Number of electronic length constants from the soma


	len: length of the segment of dendrite


	dia: diameter of the segment of dendrite


	maxP: Maximum path length of any dendrite in the cell.


	maxG: Maximum geometrical distance of any dendrite from soma


	maxL: Maximum electrotonic distance of any dendrite from the soma







For example:

['spine', '#dend#', '1e-6 + (dia<2e-6)*10', '1e-7', '1', '0.5', '6.28*p/maxP', '0']





proto: The prototype spine by the name of spine is used.

path: All compartments with the string dend in their name are used.

Spacing: The spines are only placed on branches smaller than 2 microns
(otherwise the spine spacing is 10 metres). On these small branches the
spacing is, on average, 1 micron.

Size: The size is anything from 50% to 150% of the prototype spine size.

Angle: The angle is proportional to the distance from the soma, such that
the spines make a complete spiral (2pi) around the dendrite over its length.




chanDistrib

Type: List of lists

Default: [] (empty list). Does nothing.

Use: This is for inserting ion channels onto the neuron.
Each entry is a list of strings, of the form:

[proto, path, field, expr, [field, expr]...]





The entries here are of the form:



	proto: Specifies the name of the prototype channel to insert


	path: Wildcard path of compartments in which to insert the channel


	field: Field to assign to channel, almost always Gbar, to set its
channel density.


	expr: Expression evaluated to obtain value to assign to field. This is a
mathematical expression of various geometrical properties of the cell,
as listed below.







The expr can be as simple as the value itself, but can be a much
more interesting function of geometrical properties of the cell. The geometry
arguments available to the expr include:



	p: Path length in metres from the soma, measured along the dendrite.


	g: Geometrical distance from the soma.


	L: Number of electronic length constants from the soma


	len: length of the segment of dendrite


	dia: diameter of the segment of dendrite


	maxP: Maximum path length of any dendrite in the cell.


	maxG: Maximum geometrical distance of any dendrite from soma


	maxL: Maximum electrotonic distance of any dendrite from the soma







A typical channel distribution entry is:

["kdr", "#", "Gbar", "p < 50e-6 ? 500 : 100" ]





Here the kdr channel is inserted throughout the cell, and its conductance
is at 500 Siemens/m^2 for all regions closer than 50 microns, and 100 S/m^2
for the rest of the cell. Basically there is lots of the channel on and
near the soma.




chemDistrib

Type: List of lists

Default: [] (empty list). Does nothing.

Use: This is for inserting a chemical system into the neuron
Each entry is a list of strings, of the form:

[proto, path, 'install', expr]





The entries here are of the form:



	proto: Specifies the name of the prototype chemical system to insert


	path: Wildcard path of compartments in which to insert the channel


	‘install’: Default string.


	expr: Expression evaluated to decide whether to install the chemical
system. This is the usual function of geometrical properties of the
cell. It is usually ‘1’, to tell the system to install throughout the
path.







The chemical distribution is handled specially for assignment to the neuronal
morphology. This is because a given chemical system will have reactions
between dendrite, ER, spines and PSD, as well as diffusion between these
zones. Thus, though it would be convenient,  we cannot simply define separate
chemical systems for each cellular compartment. Instead we use one of two
conventions for doing the assignment.


	Volume based. If the model format does not permit explicit naming of the
chemical compartments in the model, then the assignment is inferred from
the volume of each compartment. This limitation applies for the legacy
Genesis/kkit .g format. It may also apply to SBML models that do not
assign suitable names for their chemical compartments. In this case
the largest chemical compartment is
assigned to the dendrite, the next (if present) to the spine head, and the
smallest (if present) to the spine PSD.

This is modified in one of two ways by the flags addSomaChemCompt and
addEndoChemCompt.

addSomaChemCompt  instructs rdesigneur to use the largest compartment for
the soma. The remaining compartments follow in the usual order.

addEndoChemCompt instructs rdesigneur to insert an EndoCompartment in
each neuronal compartment. The volume order is now dend, dend_endo,
spine-head, spine-head-endo and so on.



	Name based. This works for recent SBML models, which can assign a compartment
name to each of the chemical compartments. Here the expectation is that the
names are one of soma, soma_endo, dend, dend_endo, spine,
spine_endo, psd, psd_endo.
Note that the last one, though permitted, doesn’t make much biological
sense.







adaptorList

Type: List of lists

Default: [] (empty list). Does nothing.

Use: This is for implementing an adaptor between chemical and electrical, or
chemical and structural quantities. Adaptors handle the conversion between
distinct concepts in chemical and electrical models. For example, Calcium
concentration as computed electrically in the Ca_conc objects, can map to the
calcium concentration of the ion as a molecule, where it can react, diffuse,
and undergo other calcium dynamics. Another common use is to map the
concentration of the molecular state of an ion channel, to its conductance.
The adaptor applies the conversion equation y = mx + c where y is the
target value, x is the source value, m is the slope of the conversion,
and c is the offset.

Adaptors automatically average over multiple inputs if the mapping requires.
Typically electrical segments each contain many chemical voxels, so the
adaptor averages all the source chemical quantities to apply to the
corresponding electrical quantity. Similarly, each chemical timestep is
typically much longer than the electrical timestep, so the adaptor averages
the electrical quantity over the entire duration of the chemical timestep.

Each entry is a list of strings, of the form:

[source, source_field, dest, dest_field, offset, scaling]





The entries here are:



	source: Specifies the path of the objects whose quantities need to be
converted. In the case of chemical quantities, the path starts with the
compartment name, one of dend, spine, or psd. So the molecule
Ca in the dendrite would be identified as dend/Ca.


	source_field: The field on the source object whose value is to be used.


	dest: Path of destination object, whose quantities will be assigned.
As above, chemical quantities are prefixed by their compartment name.


	dest_field: Field to be assigned on the destination object.


	offset: Double. In the conversion, what is the value of the dest_field
when the source value is zero?. In other words, the quantity c in
the conversion equation y = mx + c


	scaling: Double. The slope m.










stimList

Type: List of lists

Default: [] (empty list). Does nothing.

Use: Each entry is a list of strings, as follows:

[path, geometry_expr, dest, dest_field, time_expr]






	The entries here are:

	
	path: The usual MOOSE wildcard path to identify electrical compartments
over which the stimulus will extend. Note that the stimulus may be to
a chemical entity, but the spatial location is specified in terms of
the electrical compartments in which the chemical system is embedded.


	geometry_expr. This is the usual function of geometrical properties
of the cell. If it is non-zero, then the stimulus will apply.
There is a special case for synaptic inputs in which the geometry_expr
is repaced with the synaptic weight, recorded as a string.


	dest. This is the destination object for the stimulus.


	dest_field. This is the field on the destination object to be assigned.
There is a special case for synaptic inputs, where the field can be
periodicsyn or randsyn, representing periodic and random
synaptic input respectively.


	time_expr: This is the time expression of the value of the stimulus.
Unlike the geometry_expr, the time_expr can take the predefined
variable t which is the current simulation time. The time_expr does
not have access to the geometry arguments.








Example 1:

['head#', '0.5','glu', 'periodicsyn', '1 + 40*(t>10 && t<11)']





This acts on all glutamate receptors on the spine heads. It delivers
periodic synaptic input with weight 0.5 at a basal rate of 1 Hz, rising
by 40Hz in the interval between 10 and 11 seconds.

Example 2:

['soma', '1', '.', 'inject', '(1+cos(t/10))*(t>31.4 && t<94)* 0.5e-9' ]





This acts to deliver a current injection on the soma. It delivers cosine
input of angular frequency 1/10 radians/s, between times 31.4 and 94 seconds,
with a peak amplitude of 0.5 nA.

Rdesigneur also supports keyword-based argument lists for the stimList.
Here each entry is an rstim function as follows:

rd.rstim( elecpath, geom_expr, relpath, field, expr )





The default values of the arguments are

rd.rstim(elecpath='soma', geom_expr='1', relpath='.', field='inject', expr='0')





Example 3: To get the same outcome as example 2, one could use:

rd.rstim( expr=(1+cos(t/10))*(t>31.4 && t<94)* 0.5e-9' )





because most of the arguments are the same as the defaults.




plotList

Type: List of lists

Default: [] (empty list). Does nothing.

Use: This displays a line plot of cellular activity.
Each entry is a list as follows:

[path, geom_expr, relpath, field, title,
    [mode, ymin, ymax,saveFile, saveResolution, showFlag ]
]






	The entries here are:

	
	path: string. The usual MOOSE wildcard path to identify electrical
compartments
over which the plots will be sampled. Note that the stimulus may be to
a chemical entity, but the spatial location is specified in terms of
the electrical compartments in which the chemical system is embedded.


	geom_expr: string. This is the usual function of geometrical
properties of the cell. If it is non-zero, then the stimulus will apply.
There is a special case for synaptic inputs in which the geometry_expr
is repaced with the synaptic weight, recorded as a string.


	replath: string. Relative path to object whose value is being monitored.


	field: string. The field to monitor on the source object.


	title: Title string for the generated plot.


	mode: Optional. String to decide what kind of plot to make. Options are:



	‘time’: Default. Plot time-series


	‘wave’: Generate wave-plot with compartment/voxel number as x axis,
value as y axis, and run through a series of frames for different
time-points durign simulation.









	ymin: Double. Optional. Minimum value for y axis. Default = 0.


	ymax: Double. Optional. Maximum value for y axis. Default = 0.
If ymin==ymax then the plot autoscales.


	saveFile: string. Optional. File in which to save plot contents.
Default = “”, to
indicate that the file is not saved. Currently it can save in csv and
xml formats. nsdf will be implemented soon.


	show: Bool. Optional. Flag to decide if the plot should be displayed.
Default=True.








Rdesigneur also supports keyword-based argument lists for the plotList, having
the same entries as above. Here are two plotList entries with identical
outcomes.

['soma', '1', '.', 'Vm', 'Soma membrane potential'],
[rd.rplot( field='Vm', title= 'Soma membrane potential')],








moogList

Type: List of lists

Default: [] (empty list). Does nothing.

Use: This displays a 3-D plot of cellular activity.
Each entry is a list as follows:

[path, geom_expr, relpath, field, title, [ymin, ymax]]






	The entries here are:

	
	path: string. The usual MOOSE wildcard path to identify electrical
compartments
over which the display will be sampled. Note that the stimulus may be to
a chemical entity, but the spatial location is specified in terms of
the electrical compartments in which the chemical system is embedded.


	geom_expr: string. This is the usual function of geometrical
properties of the cell. If it is non-zero, then the stimulus will apply.
There is a special case for synaptic inputs in which the geometry_expr
is repaced with the synaptic weight, recorded as a string.


	replath: string. Relative path to object whose value is being monitored.


	field: string. The field to monitor on the source object.


	title: Title string for the generated display.


	ymin: Double. Minimum value for y axis. Default = 0.


	ymax: Double. Maximum value for y axis. Default = 0.
If ymin==ymax then the plot autoscales.


	show: Bool. Flag to decide if it should be displayed. Default=True.








Rdesigneur also supports keyword-based argument lists for the moogList, having
the same entries as above. Here are two moogList entries with identical
outcomes.

['soma', '1', 'dend/a', 'conc', 'a Conc', 0, 600 ],
[rd.rmoog(relpath='dend/a', field='conc', title = 'a Conc', ymax=600)]





To run and display moogli, one replaces the moose.start() and the
rdes.display() functions with the line:

rdes.displayMoogli(dt, runtime, rotation, fullscreen, block, azim, elev)





in which the first two arguments are required and the rest are optional and
can be assigned by keywords.

The arguments are as follows:



	dt: double. Time interval between frames on the moogli display


	runtime: double. Simulation runtime.


	rotation: double. How much to rotate the display per frame.
Defaults to pi/500.


	fullscreen: bool. Flag to do display on the full screen.
Defaults to False.


	azim: double. Azimuth setting. Defaults to 0.0


	elev: double. Elevation setting. Defaults to 0.0







The moogli primer explains how to use the 3-D display.









          

      

      

    

  

    
      
          
            
  
Rdesigneur Examples



How to run these examples
Each of the following examples can be run by clicking on the green source button
on the right side of each example, and running from within a ``.py`` python file
on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in the main
moose directory. They can be found under

    (...)/moose/moose-examples/snippets

They can be run by typing

    $ python filename.py

in your command line, where filename.py is the python file you want to run.

All of the following examples show one or more methods within each python file.
For example, in the ``cubeMeshSigNeur`` section, there are two blue tabs
describing the ``cubeMeshSigNeur.createSquid()`` and ``cubeMeshSigNeur.main()``
methods.

The filename is the bit that comes before the ``.`` in the blue boxes, with
``.py`` added at the end of it. In this case, the file name would be
``cubeMeshSigNeur.py``.













Building Chemical-Electrical Signalling Models


Building a compartment




Inserting Spines and viewing




Proceeding with Spines









          

      

      

    

  

    
      
          
            
  
Teaching Tutorials

To see interactive and executable versions of ChemicalBistables and ChemicalOscillators, please click the following link:

[image: ../../../_images/badge.svg]
 [https://mybinder.org/v2/gh/BhallaLab/moose-binder/master?filepath=home%2Fmooser%2FIndex.ipynb]These tutorials use the moose simulation environment to illustrate various scientific concepts, phenomena, and research. As such the materials in this section are useful for both teaching and learning about these topics.



	Chemical Bistables
	Simple Bistables

	Scale Volumes

	Strong Bistable System

	MAPK Feedback Model

	Propogation of a Bistable System

	Steady-state Finder

	Dose Response (Under construction)





	Chemical Oscillators
	Slow Feedback Oscillator

	Turing Pattern Oscillator in One Dimension

	Relaxation Oscillator

	Repressilator





	Squid giant axon









          

      

      

    

  

    
      
          
            
  
Chemical Bistables

A bistable system [https://en.wikipedia.org/wiki/Bistability] is a dynamic system that has two stable equilibrium states. The following examples can be used to teach and demonstrate different aspects of bistable systems or to learn how to model them using moose. Each example contains a short description, the model’s code, and the output with default settings.

Each example can be found as a python file within the main moose folder under

(...)/moose/moose-examples/tutorials/ChemicalBistables





In order to run the example, run the script

python filename.py





in command line, where filename.py is the name of the python file you would like to run. The filenames of each example are written in bold at the beginning of their respective sections, and the files themselves can be found in the aformentioned directory.

In chemical bistable models that use solvers, there are optional arguments that allow you to specify which solver you would like to use.

python filename.py [gsl | gssa | ee]





Where:



	gsl: This is the Runge-Kutta-Fehlberg implementation from the GNU Scientific Library (GSL). It is a fifth order variable timestep explicit method. Works well for most reaction systems except if they have very stiff reactions.


	gssl: Optimized Gillespie stochastic systems algorithm, custom implementation. This uses variable timesteps internally. Note that it slows down with increasing numbers of molecules in each pool. It also slows down, but not so badly, if the number of reactions goes up.


	Exponential Euler:This methods computes the solution of partial and ordinary differential equations.







All the following examples can be run with either of the three solvers, each of which has different advantages and disadvantages and each of which might produce a slightly different outcome.

Simply running the file without the optional argument will by default use the gsl solver. These gsl outputs are the ones shown below.











Simple Bistables

Filename: simpleBis.py

This example shows the key property of a chemical bistable system: it
has two stable states. Here we start out with the system settling rather
quickly to the first stable state, where molecule A is high (blue) and
the complementary molecule B (green) is low. At t = 100s, we deliver a
perturbation, which is to move 90% of the A molecules into B. This
triggers a state flip, which settles into a distinct stable state where
there is more of B than of A. At t = 200s we reverse the flip by moving
99% of B molecules back to A.

If we run the simulation with the gssa option python simpleBis.py gssa

we see exactly the same sequence of events, except now the switch is
noisy. The calculations are now run with the Gillespie Stochastic
Systems Algorithm (gssa) which incorporates probabilistic reaction
events. The switch still switches but one can see that it might flip
spontaneously once in a while.

Things to do:

1. Open a copy of the script file in an editor, and around
line 124 and 129 you will see how the state flip is implemented while
maintaining mass conservation. What happens if you flip over fewer
molecules? What is the threshold for a successful flip? Why are these
thresholds different for the different states?


	Try different volumes in line 31, and rerun using the gssa. Will you
see more or less noise if you increase the volume to 1e-20 m^3?




Code:



Show/Hide code
	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

	#########################################################################
## This program is part of 'MOOSE', the
## Messaging Object Oriented Simulation Environment.
##           Copyright (C) 2013 Upinder S. Bhalla. and NCBS
## It is made available under the terms of the
## GNU Lesser General Public License version 2.1
## See the file COPYING.LIB for the full notice.
#########################################################################

# This example illustrates how to set up a kinetic solver and kinetic model
# using the scripting interface. Normally this would be done using the
# Shell::doLoadModel command, and normally would be coordinated by the
# SimManager as the base of the entire model.
# This example creates a bistable model having two enzymes and a reaction.
# One of the enzymes is autocatalytic.
# The model is set up to run using deterministic integration.
# If you pass in the argument 'gssa' it will run with the stochastic
# solver instead
# You may also find it interesting to change the volume.

import math
import pylab
import numpy
import moose
import sys

def makeModel():
                # create container for model
                model = moose.Neutral( 'model' )
                compartment = moose.CubeMesh( '/model/compartment' )
                compartment.volume = 1e-21 # m^3
                # the mesh is created automatically by the compartment
                mesh = moose.element( '/model/compartment/mesh' )

                # create molecules and reactions
                a = moose.Pool( '/model/compartment/a' )
                b = moose.Pool( '/model/compartment/b' )
                c = moose.Pool( '/model/compartment/c' )
                enz1 = moose.Enz( '/model/compartment/b/enz1' )
                enz2 = moose.Enz( '/model/compartment/c/enz2' )
                cplx1 = moose.Pool( '/model/compartment/b/enz1/cplx' )
                cplx2 = moose.Pool( '/model/compartment/c/enz2/cplx' )
                reac = moose.Reac( '/model/compartment/reac' )

                # connect them up for reactions
                moose.connect( enz1, 'sub', a, 'reac' )
                moose.connect( enz1, 'prd', b, 'reac' )
                moose.connect( enz1, 'enz', b, 'reac' )
                moose.connect( enz1, 'cplx', cplx1, 'reac' )

                moose.connect( enz2, 'sub', b, 'reac' )
                moose.connect( enz2, 'prd', a, 'reac' )
                moose.connect( enz2, 'enz', c, 'reac' )
                moose.connect( enz2, 'cplx', cplx2, 'reac' )

                moose.connect( reac, 'sub', a, 'reac' )
                moose.connect( reac, 'prd', b, 'reac' )

                # connect them up to the compartment for volumes
                #for x in ( a, b, c, cplx1, cplx2 ):
                #                        moose.connect( x, 'mesh', mesh, 'mesh' )

                # Assign parameters
                a.concInit = 1
                b.concInit = 0
                c.concInit = 0.01
                enz1.kcat = 0.4
                enz1.Km = 4
                enz2.kcat = 0.6
                enz2.Km = 0.01
                reac.Kf = 0.001
                reac.Kb = 0.01

                # Create the output tables
                graphs = moose.Neutral( '/model/graphs' )
                outputA = moose.Table ( '/model/graphs/concA' )
                outputB = moose.Table ( '/model/graphs/concB' )

                # connect up the tables
                moose.connect( outputA, 'requestOut', a, 'getConc' );
                moose.connect( outputB, 'requestOut', b, 'getConc' );

                # Schedule the whole lot
                moose.setClock( 4, 0.01 ) # for the computational objects
                moose.setClock( 8, 1.0 ) # for the plots
                # The wildcard uses # for single level, and ## for recursive.
                moose.useClock( 4, '/model/compartment/##', 'process' )
                moose.useClock( 8, '/model/graphs/#', 'process' )

def displayPlots():
                for x in moose.wildcardFind( '/model/graphs/conc#' ):
                                t = numpy.arange( 0, x.vector.size, 1 ) #sec
                                pylab.plot( t, x.vector, label=x.name )
                pylab.legend()
                pylab.show()

def main():
                solver = "gsl"
                makeModel()
                if ( len ( sys.argv ) == 2 ):
                    solver = sys.argv[1]
                stoich = moose.Stoich( '/model/compartment/stoich' )
                stoich.compartment = moose.element( '/model/compartment' )
                if ( solver == 'gssa' ):
                    gsolve = moose.Gsolve( '/model/compartment/ksolve' )
                    stoich.ksolve = gsolve
                else:
                    ksolve = moose.Ksolve( '/model/compartment/ksolve' )
                    stoich.ksolve = ksolve
                stoich.path = "/model/compartment/##"
                #solver.method = "rk5"
                #mesh = moose.element( "/model/compartment/mesh" )
                #moose.connect( mesh, "remesh", solver, "remesh" )
                moose.setClock( 5, 1.0 ) # clock for the solver
                moose.useClock( 5, '/model/compartment/ksolve', 'process' )

                moose.reinit()
                moose.start( 100.0 ) # Run the model for 100 seconds.

                a = moose.element( '/model/compartment/a' )
                b = moose.element( '/model/compartment/b' )

                # move most molecules over to b
                b.conc = b.conc + a.conc * 0.9
                a.conc = a.conc * 0.1
                moose.start( 100.0 ) # Run the model for 100 seconds.

                # move most molecules back to a
                a.conc = a.conc + b.conc * 0.99
                b.conc = b.conc * 0.01
                moose.start( 100.0 ) # Run the model for 100 seconds.

                # Iterate through all plots, dump their contents to data.plot.
                displayPlots()

                quit()

# Run the 'main' if this script is executed standalone.
if __name__ == '__main__':
        main()














Output:

[image: ../../../_images/simpleB.png]



Scale Volumes

File name: scaleVolumes.py

This script runs exactly the same model as in simpleBis.py, but it
automatically scales the volumes from 1e-19 down to smaller values.

Note how the simulation successively becomes noisier, until at very
small volumes there are spontaneous state transitions.

Code:



Show/Hide code
	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

	#########################################################################
## This program is part of 'MOOSE', the
## Messaging Object Oriented Simulation Environment.
##           Copyright (C) 2013 Upinder S. Bhalla. and NCBS
## It is made available under the terms of the
## GNU Lesser General Public License version 2.1
## See the file COPYING.LIB for the full notice.
#########################################################################

import math
import pylab
import numpy
import moose

def makeModel():
            # create container for model
            model = moose.Neutral( 'model' )
            compartment = moose.CubeMesh( '/model/compartment' )
            compartment.volume = 1e-20
            # the mesh is created automatically by the compartment
            mesh = moose.element( '/model/compartment/mesh' )

            # create molecules and reactions
            a = moose.Pool( '/model/compartment/a' )
            b = moose.Pool( '/model/compartment/b' )
            c = moose.Pool( '/model/compartment/c' )
            enz1 = moose.Enz( '/model/compartment/b/enz1' )
            enz2 = moose.Enz( '/model/compartment/c/enz2' )
            cplx1 = moose.Pool( '/model/compartment/b/enz1/cplx' )
            cplx2 = moose.Pool( '/model/compartment/c/enz2/cplx' )
            reac = moose.Reac( '/model/compartment/reac' )

            # connect them up for reactions
            moose.connect( enz1, 'sub', a, 'reac' )
            moose.connect( enz1, 'prd', b, 'reac' )
            moose.connect( enz1, 'enz', b, 'reac' )
            moose.connect( enz1, 'cplx', cplx1, 'reac' )

            moose.connect( enz2, 'sub', b, 'reac' )
            moose.connect( enz2, 'prd', a, 'reac' )
            moose.connect( enz2, 'enz', c, 'reac' )
            moose.connect( enz2, 'cplx', cplx2, 'reac' )

            moose.connect( reac, 'sub', a, 'reac' )
            moose.connect( reac, 'prd', b, 'reac' )

            # connect them up to the compartment for volumes
            #for x in ( a, b, c, cplx1, cplx2 ):
            #                       moose.connect( x, 'mesh', mesh, 'mesh' )

            # Assign parameters
            a.concInit = 1
            b.concInit = 0
            c.concInit = 0.01
            enz1.kcat = 0.4
            enz1.Km = 4
            enz2.kcat = 0.6
            enz2.Km = 0.01
            reac.Kf = 0.001
            reac.Kb = 0.01

            # Create the output tables
            graphs = moose.Neutral( '/model/graphs' )
            outputA = moose.Table ( '/model/graphs/concA' )
            outputB = moose.Table ( '/model/graphs/concB' )

            # connect up the tables
            moose.connect( outputA, 'requestOut', a, 'getConc' );
            moose.connect( outputB, 'requestOut', b, 'getConc' );

            # Schedule the whole lot
            moose.setClock( 4, 0.01 ) # for the computational objects
            moose.setClock( 8, 1.0 ) # for the plots
            # The wildcard uses # for single level, and ## for recursive.
            moose.useClock( 4, '/model/compartment/##', 'process' )
            moose.useClock( 8, '/model/graphs/#', 'process' )

def displayPlots():
            for x in moose.wildcardFind( '/model/graphs/conc#' ):
                            t = numpy.arange( 0, x.vector.size, 1 ) #sec
                            pylab.plot( t, x.vector, label=x.name )

def main():

    """
    This example illustrates how to run a model at different volumes.
    The key line is just to set the volume of the compartment::

        compt.volume = vol

    If everything
    else is set up correctly, then this change propagates through to all
    reactions molecules.

    For a deterministic reaction one would not see any change in output
    concentrations.
    For a stochastic reaction illustrated here, one sees the level of
    'noise'
    changing, even though the concentrations are similar up to a point.
    This example creates a bistable model having two enzymes and a reaction.
    One of the enzymes is autocatalytic.
    This model is set up within the script rather than using an external
    file.
    The model is set up to run using the GSSA (Gillespie Stocahstic systems
    algorithim) method in MOOSE.

    To run the example, run the script

        ``python scaleVolumes.py``

    and close the plots every cycle to see the outcome of stochastic
    calculations at ever smaller volumes, keeping concentrations the same.
    """
    makeModel()
    moose.seed( 11111 )
    gsolve = moose.Gsolve( '/model/compartment/gsolve' )
    stoich = moose.Stoich( '/model/compartment/stoich' )
    compt = moose.element( '/model/compartment' );
    stoich.compartment = compt
    stoich.ksolve = gsolve
    stoich.path = "/model/compartment/##"
    moose.setClock( 5, 1.0 ) # clock for the solver
    moose.useClock( 5, '/model/compartment/gsolve', 'process' )
    a = moose.element( '/model/compartment/a' )

    for vol in ( 1e-19, 1e-20, 1e-21, 3e-22, 1e-22, 3e-23, 1e-23 ):
        # Set the volume
        compt.volume = vol
        print('vol = {}, a.concInit = {}, a.nInit = {}'.format( vol, a.concInit, a.nInit))
        print('Close graph to go to next plot\n')

        moose.reinit()
        moose.start( 100.0 ) # Run the model for 100 seconds.

        a = moose.element( '/model/compartment/a' )
        b = moose.element( '/model/compartment/b' )

        # move most molecules over to b
        b.conc = b.conc + a.conc * 0.9
        a.conc = a.conc * 0.1
        moose.start( 100.0 ) # Run the model for 100 seconds.

        # move most molecules back to a
        a.conc = a.conc + b.conc * 0.99
        b.conc = b.conc * 0.01
        moose.start( 100.0 ) # Run the model for 100 seconds.

        # Iterate through all plots, dump their contents to data.plot.
        displayPlots()
        pylab.show()

    quit()

# Run the 'main' if this script is executed standalone.
if __name__ == '__main__':
    main()














Output:

vol = 1e-19, a.concInit = 1.0, a.nInit = 60221.415





[image: ../../../_images/sV1.png]
vol = 1e-20, a.concInit = 1.0, a.nInit = 6022.1415





[image: ../../../_images/sV2.png]
vol = 1e-21, a.concInit = 1.0, a.nInit = 602.21415





[image: ../../../_images/sV3.png]
vol = 3e-22, a.concInit = 1.0, a.nInit = 180.664245





[image: ../../../_images/sV4.png]
vol = 1e-22, a.concInit = 1.0, a.nInit = 60.221415





[image: ../../../_images/sV5.png]
vol = 3e-23, a.concInit = 1.0, a.nInit = 18.0664245





[image: ../../../_images/sV6.png]
vol = 1e-23, a.concInit = 1.0, a.nInit = 6.0221415





[image: ../../../_images/sV7.png]



Strong Bistable System

File name: strongBis.py

This example illustrates a particularly strong, that is, parametrically
robust bistable system. The model topology is symmetric between
molecules b and c. We have both positive feedback of molecules
b and c onto themselves, and also inhibition of b by c
and vice versa.

[image: ../../../_images/strongBis.png]
Open the python file to see what is happening. The simulation starts at
a symmetric point and the model settles at precisely the balance point
where a, b, and c are at the same concentration. At t= 100
we apply a small molecular ‘tap’ to push it over to a state where c
is larger. This is stable. At t = 210 we apply a moderate push to show
that it is now very stably in this state, and the system rebounds to its
original levels. At t = 320 we apply a strong push to take it over to a
state where b is larger. At t = 430 we give it a strong push to take
it back to the c dominant state.

Code:



Show/Hide code
	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

	#########################################################################
## This program is part of 'MOOSE', the
## Messaging Object Oriented Simulation Environment.
##           Copyright (C) 2014 Upinder S. Bhalla. and NCBS
## It is made available under the terms of the
## GNU Lesser General Public License version 2.1
## See the file COPYING.LIB for the full notice.
#########################################################################

import moose
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import pylab
import numpy
import sys

def main():

        solver = "gsl"  # Pick any of gsl, gssa, ee..
        #solver = "gssa"  # Pick any of gsl, gssa, ee..
        #moose.seed( 1234 ) # Needed if stochastic.
        mfile = '../../genesis/M1719.g'
        runtime = 100.0
        if ( len( sys.argv ) >= 2 ):
                solver = sys.argv[1]
        modelId = moose.loadModel( mfile, 'model', solver )
        # Increase volume so that the stochastic solver gssa
        # gives an interesting output
        compt = moose.element( '/model/kinetics' )
        compt.volume = 0.2e-19
        r = moose.element( '/model/kinetics/equil' )

        moose.reinit()
        moose.start( runtime )
        r.Kf *= 1.1 # small tap to break symmetry
        moose.start( runtime/10 )
        r.Kf = r.Kb
        moose.start( runtime )

        r.Kb *= 2.0 # Moderate push does not tip it back.
        moose.start( runtime/10 )
        r.Kb = r.Kf
        moose.start( runtime )

        r.Kb *= 5.0 # Strong push does tip it over
        moose.start( runtime/10 )
        r.Kb = r.Kf
        moose.start( runtime )
        r.Kf *= 5.0 # Strong push tips it back.
        moose.start( runtime/10 )
        r.Kf = r.Kb
        moose.start( runtime )


        # Display all plots.
        img = mpimg.imread( 'strongBis.png' )
        fig = plt.figure( figsize=(12, 10 ) )
        png = fig.add_subplot( 211 )
        imgplot = plt.imshow( img )
        ax = fig.add_subplot( 212 )
        x = moose.wildcardFind( '/model/#graphs/conc#/#' )
        dt = moose.element( '/clock' ).tickDt[18]
        t = numpy.arange( 0, x[0].vector.size, 1 ) * dt
        ax.plot( t, x[0].vector, 'r-', label=x[0].name )
        ax.plot( t, x[1].vector, 'g-', label=x[1].name )
        ax.plot( t, x[2].vector, 'b-', label=x[2].name )
        plt.ylabel( 'Conc (mM)' )
        plt.xlabel( 'Time (seconds)' )
        pylab.legend()
        pylab.show()

# Run the 'main' if this script is executed standalone.
if __name__ == '__main__':
        main()














Output:

[image: ../../../_images/strongB.png]



MAPK Feedback Model

File name: mapkFB.py

This example illustrates loading, and running a kinetic model for a much
more complex bistable positive feedback system, defined in kkit format.
This is based on Bhalla, Ram and Iyengar, Science 2002.

The core of this model is a positive feedback loop comprising of the
MAPK cascade, PLA2, and PKC. It receives PDGF and Ca2+ as inputs.

[image: ../../../_images/mapkFB.png]
This model is quite a large one and due to some stiffness in its
equations, it takes about 30 seconds to execute. Note that this is still
200 times faster than the events it models.

The simulation illustrated here shows how the model starts out in a
state of low activity. It is induced to ‘turn on’ when a a PDGF stimulus
is given for 400 seconds, starting at t = 500s. After it has settled to
the new ‘on’ state, the model is made to ‘turn off’ by setting the
system calcium levels to zero. This inhibition starts at t = 2900 and
goes on for 500 s.

Note that this is a somewhat unphysiological manipulation! Following
this the model settles back to the same ‘off’ state it was in
originally.

Code:



Show/Hide code
	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

	#########################################################################
## This program is part of 'MOOSE', the
## Messaging Object Oriented Simulation Environment.
##           Copyright (C) 2014 Upinder S. Bhalla. and NCBS
## It is made available under the terms of the
## GNU Lesser General Public License version 2.1
## See the file COPYING.LIB for the full notice.
#########################################################################

import moose
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import pylab
import numpy
import sys
import os

scriptDir = os.path.dirname( os.path.realpath( __file__ ) )

def main():
    """
This example illustrates loading, and running a kinetic model
for a bistable positive feedback system, defined in kkit format.
This is based on Bhalla, Ram and Iyengar, Science 2002.

The core of this model is a positive feedback loop comprising of
the MAPK cascade, PLA2, and PKC. It receives PDGF and Ca2+ as
inputs.

This model is quite a large one and due to some stiffness in its
equations, it runs somewhat slowly.

The simulation illustrated here shows how the model starts out in
a state of low activity. It is induced to 'turn on' when a
a PDGF stimulus is given for 400 seconds.
After it has settled to the new 'on' state, model is made to
'turn off'
by setting the system calcium levels to zero for a while. This
is a somewhat unphysiological manipulation!

    """

    solver = "gsl"  # Pick any of gsl, gssa, ee..
    #solver = "gssa"  # Pick any of gsl, gssa, ee..
    mfile = os.path.join( scriptDir, '..', '..', 'genesis' , 'acc35.g' )
    runtime = 2000.0
    if ( len( sys.argv ) == 2 ):
        solver = sys.argv[1]
    modelId = moose.loadModel( mfile, 'model', solver )
    # Increase volume so that the stochastic solver gssa
    # gives an interesting output
    compt = moose.element( '/model/kinetics' )
    compt.volume = 5e-19

    moose.reinit()
    moose.start( 500 )
    moose.element( '/model/kinetics/PDGFR/PDGF' ).concInit = 0.0001
    moose.start( 400 )
    moose.element( '/model/kinetics/PDGFR/PDGF' ).concInit = 0.0
    moose.start( 2000 )
    moose.element( '/model/kinetics/Ca' ).concInit = 0.0
    moose.start( 500 )
    moose.element( '/model/kinetics/Ca' ).concInit = 0.00008
    moose.start( 2000 )

    # Display all plots.
    img = mpimg.imread( 'mapkFB.png' )
    fig = plt.figure( figsize=(12, 10 ) )
    png = fig.add_subplot( 211 )
    imgplot = plt.imshow( img )
    ax = fig.add_subplot( 212 )
    x = moose.wildcardFind( '/model/#graphs/conc#/#' )
    t = numpy.arange( 0, x[0].vector.size, 1 ) * x[0].dt
    ax.plot( t, x[0].vector, 'b-', label=x[0].name )
    ax.plot( t, x[1].vector, 'c-', label=x[1].name )
    ax.plot( t, x[2].vector, 'r-', label=x[2].name )
    ax.plot( t, x[3].vector, 'm-', label=x[3].name )
    plt.ylabel( 'Conc (mM)' )
    plt.xlabel( 'Time (seconds)' )
    pylab.legend()
    pylab.show()

# Run the 'main' if this script is executed standalone.
if __name__ == '__main__':
        main()














Output:

[image: ../../../_images/mapkFB2.png]



Propogation of a Bistable System

File name: propagationBis.py

All the above models have been well-mixed, that is point or non-spatial
models. Bistables do interesting things when they are dispersed in
space. This is illustrated in this example. Here we have a tapering
cylinder, that is a pseudo 1-dimensional reaction-diffusion system.
Every point in this cylinder has the bistable system from the strongBis
example.

[image: ../../../_images/propBis.png]
The example has two stages. First it starts out with the model in the
unstable transition point, and introduces a small symmetry-breaking
perturbation at one end. This rapidly propagates through the entire
length model, leaving molecule b at a higher value than c.

At t = 100 we carry out a different manipulation. We flip the
concentrations of molecules b and c for the left half of the model, and
then just let it run. Now we have opposing bistable states on either
half. In the middle, the two systems battle it out. Molecule c from
the left side diffuses over to the right, and tries to inhibit b,
and vice versa. However we have a small asymmetry due to the tapering of
the cylinder. As there is a slightly larger volume on the left, the
transition point gradually advances to the right, as molecule b
yields to the slightly larger amounts of molecule c.

Code:



Show/Hide code
	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

	#########################################################################
## This program is part of 'MOOSE', the
## Messaging Object Oriented Simulation Environment.
##           Copyright (C) 2014 Upinder S. Bhalla. and NCBS
## It is made available under the terms of the
## GNU Lesser General Public License version 2.1
## See the file COPYING.LIB for the full notice.
#########################################################################

"""
This example illustrates propagation of state flips in a
linear 1-dimensional reaction-diffusion system. It uses a
bistable system loaded in from a kkit definition file, and
places this in a tapering cylinder for pseudo 1-dimentionsional
diffusion.

This example illustrates a number of features of reaction-diffusion
calculations.

First, it shows how to set up such systems. Key steps are to create
the compartment and define its voxelization, then create the Ksolve,
Dsolve, and Stoich. Then we assign stoich.compartment, ksolve and
dsolve in that order. Finally we assign the path of the Stoich.

For running the model, we start by introducing
a small symmetry-breaking increment of concInit
of the molecule **b** in the last compartment on the cylinder. The model
starts out with molecules at equal concentrations, so that the system would
settle to the unstable fixed point. This symmetry breaking leads
to the last compartment moving towards the state with an
increased concentration of **b**,
and this effect propagates to all other compartments.

Once the model has settled to the state where **b** is high throughout,
we simply exchange the concentrations of **b** with **c** in the left
half of the cylinder. This introduces a brief transient at the junction,
which soon settles to a smooth crossover.

Finally, as we run the simulation, the tapering geometry comes into play.
Since the left hand side has a larger diameter than the right, the
state on the left gradually wins over and the transition point slowly
moves to the right.

"""

import math
import numpy
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import moose
import sys

def makeModel():
                # create container for model
                r0 = 1e-6        # m
                r1 = 0.5e-6        # m. Note taper.
                num = 200
                diffLength = 1e-6 # m
                comptLength = num * diffLength        # m
                diffConst = 20e-12 # m^2/sec
                concA = 1 # millimolar
                diffDt = 0.02  # for the diffusion
                chemDt = 0.2   # for the reaction
                mfile = '../../genesis/M1719.g'

                model = moose.Neutral( 'model' )
                compartment = moose.CylMesh( '/model/kinetics' )

                # load in model
                modelId = moose.loadModel( mfile, '/model', 'ee' )
                a = moose.element( '/model/kinetics/a' )
                b = moose.element( '/model/kinetics/b' )
                c = moose.element( '/model/kinetics/c' )

                ac = a.concInit
                bc = b.concInit
                cc = c.concInit

                compartment.r0 = r0
                compartment.r1 = r1
                compartment.x0 = 0
                compartment.x1 = comptLength
                compartment.diffLength = diffLength
                assert( compartment.numDiffCompts == num )

                # Assign parameters
                for x in moose.wildcardFind( '/model/kinetics/##[ISA=PoolBase]' ):
                    #print 'pools: ', x, x.name
                    x.diffConst = diffConst

                # Make solvers
                ksolve = moose.Ksolve( '/model/kinetics/ksolve' )
                dsolve = moose.Dsolve( '/model/dsolve' )
                # Set up clocks.
                moose.setClock( 10, diffDt )
                for i in range( 11, 17 ):
                    moose.setClock( i, chemDt )

                stoich = moose.Stoich( '/model/kinetics/stoich' )
                stoich.compartment = compartment
                stoich.ksolve = ksolve
                stoich.dsolve = dsolve
                stoich.path = "/model/kinetics/##"
                print(('dsolve.numPools, num = ', dsolve.numPools, num))
                b.vec[num-1].concInit *= 1.01 # Break symmetry.

def main():
                runtime = 100
                displayInterval = 2
                makeModel()
                dsolve = moose.element( '/model/dsolve' )
                moose.reinit()
                #moose.start( runtime ) # Run the model for 10 seconds.

                a = moose.element( '/model/kinetics/a' )
                b = moose.element( '/model/kinetics/b' )
                c = moose.element( '/model/kinetics/c' )

                img = mpimg.imread( 'propBis.png' )
                #imgplot = plt.imshow( img )
                #plt.show()

                plt.ion()
                fig = plt.figure( figsize=(12,10) )
                png = fig.add_subplot(211)
                imgplot = plt.imshow( img )
                ax = fig.add_subplot(212)
                ax.set_ylim( 0, 0.001 )
                plt.ylabel( 'Conc (mM)' )
                plt.xlabel( 'Position along cylinder (microns)' )
                pos = numpy.arange( 0, a.vec.conc.size, 1 )
                line1, = ax.plot( pos, a.vec.conc, 'r-', label='a' )
                line2, = ax.plot( pos, b.vec.conc, 'g-',  label='b' )
                line3, = ax.plot( pos, c.vec.conc, 'b-', label='c' )
                timeLabel = plt.text(60, 0.0009, 'time = 0')
                plt.legend()
                fig.canvas.draw()

                for t in range( displayInterval, runtime, displayInterval ):
                    moose.start( displayInterval )
                    line1.set_ydata( a.vec.conc )
                    line2.set_ydata( b.vec.conc )
                    line3.set_ydata( c.vec.conc )
                    timeLabel.set_text( "time = %d" % t )
                    fig.canvas.draw()

                print('Swapping concs of b and c in half the cylinder')
                for i in range( b.numData/2 ):
                    temp = b.vec[i].conc
                    b.vec[i].conc = c.vec[i].conc
                    c.vec[i].conc = temp

                newruntime = 200
                for t in range( displayInterval, newruntime, displayInterval ):
                    moose.start( displayInterval )
                    line1.set_ydata( a.vec.conc )
                    line2.set_ydata( b.vec.conc )
                    line3.set_ydata( c.vec.conc )
                    timeLabel.set_text( "time = %d" % (t + runtime) )
                    fig.canvas.draw()

                print( "Hit 'enter' to exit" )
                sys.stdin.read(1)



# Run the 'main' if this script is executed standalone.
if __name__ == '__main__':
        main()














Output:

[image: ../../../_images/propBis.gif]



Steady-state Finder

File name: findSteadyState

This is an example of how to use an internal MOOSE solver to find steady
states of a system very rapidly. The method starts from a random
position in state space that obeys mass conservation. It then finds the
nearest steady state and reports it. If it does this enough times it
should find all the steady states.

We illustrate this process for 50 attempts to find the steady states. It
does find all of them. Each time it plots and prints the values, though
the plotting is not necessary.

The printout shows the concentrations of all molecules in the first 5
columns. Then it prints the type of solution, and the numbers of
negative and positive eigenvalues. In all cases the calculations are
successful, though it takes different numbers of iterations to arrive at
the steady state. In some models it would be necessary to put a cap on
the number of iterations, if the system is not able to find a steady
state.

In this example we run the bistable model using the ODE solver right at
the end, and manually enforce transitions to show where the target
steady states are.

For more information on the algorithm used, look in the comments within
the main method of the code below.

Code:



Show/Hide code
	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

	#########################################################################
## This program is part of 'MOOSE', the
## Messaging Object Oriented Simulation Environment.
##           Copyright (C) 2013 Upinder S. Bhalla. and NCBS
## It is made available under the terms of the
## GNU Lesser General Public License version 2.1
## See the file COPYING.LIB for the full notice.
#########################################################################

from __future__ import print_function

import math
import pylab
import numpy
import moose

def main():
    """
    This example sets up the kinetic solver and steady-state finder, on
    a bistable model of a chemical system. The model is set up within the
    script.
    The algorithm calls the steady-state finder 50 times with different
    (randomized) initial conditions, as follows:

    * Set up the random initial condition that fits the conservation laws
    * Run for 2 seconds. This should not be mathematically necessary, but
      for obscure numerical reasons it makes it much more likely that the
      steady state solver will succeed in finding a state.
    * Find the fixed point
    * Print out the fixed point vector and various diagnostics.
    * Run for 10 seconds. This is completely unnecessary, and is done here
      just so that the resultant graph will show what kind of state has
      been  found.

    After it does all this, the program runs for 100 more seconds on the
    last found fixed point (which turns out to be a saddle node), then
    is hard-switched in the script to the first attractor basin from which
    it runs for another 100 seconds till it settles there, and then
    is hard-switched yet again to the second attractor and runs for 400
    seconds.

    Looking at the output you will see many features of note:

    * the first attractor (stable point) and the saddle point (unstable
      fixed point) are both found quite often. But the second
      attractor is found just once.
      It has a very small basin of attraction.
    * The values found for each of the fixed points match well with the
      values found by running the system to steady-state at the end.
    * There are a large number of failures to find a fixed point. These are
      found and reported in the diagnostics. They show up on the plot
      as cases where the 10-second runs are not flat.

    If you wanted to find fixed points in a production model, you would
    not need to do the 10-second runs, and you would need to eliminate the
    cases where the state-finder failed. Then you could identify the good
    points and keep track of how many of each were found.

    There is no way to guarantee that all fixed points have been found
    using this algorithm! If there are points in an obscure corner of state
    space (as for the singleton second attractor convergence in this
    example) you may have to iterate very many times to find them.

    You may wish to sample concentration space logarithmically rather than
    linearly.
    """
    compartment = makeModel()
    ksolve = moose.Ksolve( '/model/compartment/ksolve' )
    stoich = moose.Stoich( '/model/compartment/stoich' )
    stoich.compartment = compartment
    stoich.ksolve = ksolve
    stoich.path = "/model/compartment/##"
    state = moose.SteadyState( '/model/compartment/state' )

    moose.reinit()
    state.stoich = stoich
    state.showMatrices()
    state.convergenceCriterion = 1e-6
    moose.seed( 111 ) # Used when generating the samples in state space

    for i in range( 0, 50 ):
        getState( ksolve, state )

    # Now display the states of the system at more length to compare.
    moose.start( 100.0 ) # Run the model for 100 seconds.

    a = moose.element( '/model/compartment/a' )
    b = moose.element( '/model/compartment/b' )

    # move most molecules over to b
    b.conc = b.conc + a.conc * 0.9
    a.conc = a.conc * 0.1
    moose.start( 100.0 ) # Run the model for 100 seconds.

    # move most molecules back to a
    a.conc = a.conc + b.conc * 0.99
    b.conc = b.conc * 0.01
    moose.start( 400.0 ) # Run the model for 200 seconds.

    # Iterate through all plots, dump their contents to data.plot.
    displayPlots()

    quit()

def makeModel():
    """ This function creates a bistable reaction system using explicit
    MOOSE calls rather than load from a file
    """
    # create container for model
    model = moose.Neutral( 'model' )
    compartment = moose.CubeMesh( '/model/compartment' )
    compartment.volume = 1e-15
    # the mesh is created automatically by the compartment
    mesh = moose.element( '/model/compartment/mesh' )

    # create molecules and reactions
    a = moose.Pool( '/model/compartment/a' )
    b = moose.Pool( '/model/compartment/b' )
    c = moose.Pool( '/model/compartment/c' )
    enz1 = moose.Enz( '/model/compartment/b/enz1' )
    enz2 = moose.Enz( '/model/compartment/c/enz2' )
    cplx1 = moose.Pool( '/model/compartment/b/enz1/cplx' )
    cplx2 = moose.Pool( '/model/compartment/c/enz2/cplx' )
    reac = moose.Reac( '/model/compartment/reac' )

    # connect them up for reactions
    moose.connect( enz1, 'sub', a, 'reac' )
    moose.connect( enz1, 'prd', b, 'reac' )
    moose.connect( enz1, 'enz', b, 'reac' )
    moose.connect( enz1, 'cplx', cplx1, 'reac' )

    moose.connect( enz2, 'sub', b, 'reac' )
    moose.connect( enz2, 'prd', a, 'reac' )
    moose.connect( enz2, 'enz', c, 'reac' )
    moose.connect( enz2, 'cplx', cplx2, 'reac' )

    moose.connect( reac, 'sub', a, 'reac' )
    moose.connect( reac, 'prd', b, 'reac' )

    # Assign parameters
    a.concInit = 1
    b.concInit = 0
    c.concInit = 0.01
    enz1.kcat = 0.4
    enz1.Km = 4
    enz2.kcat = 0.6
    enz2.Km = 0.01
    reac.Kf = 0.001
    reac.Kb = 0.01

    # Create the output tables
    graphs = moose.Neutral( '/model/graphs' )
    outputA = moose.Table2 ( '/model/graphs/concA' )
    outputB = moose.Table2 ( '/model/graphs/concB' )
    outputC = moose.Table2 ( '/model/graphs/concC' )
    outputCplx1 = moose.Table2 ( '/model/graphs/concCplx1' )
    outputCplx2 = moose.Table2 ( '/model/graphs/concCplx2' )

    # connect up the tables
    moose.connect( outputA, 'requestOut', a, 'getConc' );
    moose.connect( outputB, 'requestOut', b, 'getConc' );
    moose.connect( outputC, 'requestOut', c, 'getConc' );
    moose.connect( outputCplx1, 'requestOut', cplx1, 'getConc' );
    moose.connect( outputCplx2, 'requestOut', cplx2, 'getConc' );

    return compartment

def displayPlots():
    for x in moose.wildcardFind( '/model/graphs/conc#' ):
            t = numpy.arange( 0, x.vector.size, 1 ) #sec
            pylab.plot( t, x.vector, label=x.name )
    pylab.legend()
    pylab.show()

def getState( ksolve, state ):
    """ This function finds a steady state starting from a random
    initial condition that is consistent with the stoichiometry rules
    and the original model concentrations.
    """
    scale = 1.0 / ( 1e-15 * 6.022e23 )
    state.randomInit() # Randomize init conditions, subject to stoichiometry
    moose.start( 2.0 ) # Run the model for 2 seconds.
    state.settle() # This function finds the steady states.
    for x in ksolve.nVec[0]:
        print( "{:.2f}".format( x * scale ), end=' ')

    print( "Type={} NegEig={} PosEig={} status={} {} Iter={:2d}".format( state.stateType, state.nNegEigenvalues, state.nPosEigenvalues, state.solutionStatus, state.status, state.nIter))
    moose.start( 10.0 ) # Run model for 10 seconds, just for display


# Run the 'main' if this script is executed standalone.
if __name__ == '__main__':
    main()














Output:

0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success Iter=16
0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success Iter=29
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=10
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=26
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=27
0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success Iter=30
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=12
0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success Iter=29
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=12
0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success Iter=41
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=29
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=18
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=27
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=14
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=12
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=19
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter= 6
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=14
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=23
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=25
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=16
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter= 5
0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success Iter=43
0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success Iter= 9
0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success Iter=43
0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success Iter=29
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=27
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter= 9
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=12
0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success Iter=24
0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success Iter=26
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=14
0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success Iter=14
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=10
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=13
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=26
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=21
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=26
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=24
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=24
0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success Iter=18
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=26
0.18 0.75 0.00 0.03 0.01 Type=5 NegEig=4 PosEig=0 status=0 success Iter=13
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=23
0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success Iter=24
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter= 8
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success Iter=18
0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=1 status=0 success Iter=21
0.99 0.00 0.01 0.00 0.00 Type=0 NegEig=3 PosEig=0 status=0 success Iter=15
0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success Iter=29





[image: ../../../_images/findS.png]



Dose Response (Under construction)

File name: doseResponse.py

This example generates a doseResponse plot for a bistable system,
against a control parameter (dose) that takes the system in and out
again from the bistable regime. Like the previous example, it uses the
steady-state solver to find the stable points for each value of the
control parameter. Unfortunately it doesn’t work right now. Seems like
the kcat scaling isn’t being registered.

Code:



Show/Hide code
	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

	## Makes and plots the dose response curve for bistable models
## Author: Sahil Moza
## June 26, 2014

import moose
import pylab
import numpy as np
from matplotlib import pyplot as plt

def setupSteadyState(simdt,plotDt):

    ksolve = moose.Ksolve( '/model/kinetics/ksolve' )
    stoich = moose.Stoich( '/model/kinetics/stoich' )
    stoich.compartment = moose.element('/model/kinetics')

    stoich.ksolve = ksolve
    #ksolve.stoich = stoich
    stoich.path = "/model/kinetics/##"
    state = moose.SteadyState( '/model/kinetics/state' )

    #### Set clocks here
    #moose.useClock(4, "/model/kinetics/##[]", "process")
    #moose.setClock(4, float(simdt))
    #moose.setClock(5, float(simdt))
    #moose.useClock(5, '/model/kinetics/ksolve', 'process' )
    #moose.useClock(8, '/model/graphs/#', 'process' )
    #moose.setClock(8, float(plotDt))

    moose.reinit()

    state.stoich = stoich
    state.showMatrices()
    state.convergenceCriterion = 1e-8

    return ksolve, state

def parseModelName(fileName):
    pos1=fileName.rfind('/')
    pos2=fileName.rfind('.')
    directory=fileName[:pos1]
    prefix=fileName[pos1+1:pos2]
    suffix=fileName[pos2+1:len(fileName)]
    return directory, prefix, suffix

# Solve for the steady state
def getState( ksolve, state, vol):
      scale = 1.0 / ( vol * 6.022e23 )
      moose.reinit
      state.randomInit() # Removing random initial condition to systematically make Dose reponse curves.
      moose.start( 2.0 ) # Run the model for 2 seconds.
      state.settle()

      vector = []
      a = moose.element( '/model/kinetics/a' ).conc
      for x in ksolve.nVec[0]:
          vector.append( x * scale)
      moose.start( 10.0 ) # Run model for 10 seconds, just for display
      failedSteadyState = any([np.isnan(x) for x in vector])

      if not (failedSteadyState):
           return state.stateType, state.solutionStatus, a, vector


def main():
    # Setup parameters for simulation and plotting
    simdt= 1e-2
    plotDt= 1

    # Factors to change in the dose concentration in log scale
    factorExponent = 10  ## Base: ten raised to some power.
    factorBegin = -20
    factorEnd = 21
    factorStepsize = 1
    factorScale = 10.0 ## To scale up or down the factors

    # Load Model and set up the steady state solver.
    # model = sys.argv[1] # To load model from a file.
    model = './19085.cspace'
    modelPath, modelName, modelType = parseModelName(model)
    outputDir = modelPath

    modelId = moose.loadModel(model, 'model', 'ee')
    dosePath = '/model/kinetics/b/DabX' # The dose entity

    ksolve, state = setupSteadyState( simdt, plotDt)
    vol = moose.element( '/model/kinetics' ).volume
    iterInit = 100
    solutionVector = []
    factorArr = []

    enz = moose.element(dosePath)
    init = enz.kcat # Dose parameter

    # Change Dose here to .
    for factor in range(factorBegin, factorEnd, factorStepsize ):
        scale = factorExponent ** (factor/factorScale)
        enz.kcat = init * scale
        print( "scale={:.3f}\tkcat={:.3f}".format( scale, enz.kcat) )
        for num in range(iterInit):
            stateType, solStatus, a, vector = getState( ksolve, state, vol)
            if solStatus == 0:
                #solutionVector.append(vector[0]/sum(vector))
                solutionVector.append(a)
                factorArr.append(scale)

    joint = np.array([factorArr, solutionVector])
    joint = joint[:,joint[1,:].argsort()]

    # Plot dose response.
    fig0 = plt.figure()
    pylab.semilogx(joint[0,:],joint[1,:],marker="o",label = 'concA')
    pylab.xlabel('Dose')
    pylab.ylabel('Response')
    pylab.suptitle('Dose-Reponse Curve for a bistable system')

    pylab.legend(loc=3)
    #plt.savefig(outputDir + "/" + modelName +"_doseResponse" + ".png")
    plt.show()
    #plt.close(fig0)
    quit()



if __name__ == '__main__':
     main()














Output:

scale=0.010 kcat=0.004
scale=0.013 kcat=0.005
scale=0.016 kcat=0.006
scale=0.020 kcat=0.007
scale=0.025 kcat=0.009
scale=0.032 kcat=0.011
scale=0.040 kcat=0.014
scale=0.050 kcat=0.018
scale=0.063 kcat=0.023
scale=0.079 kcat=0.029
scale=0.100 kcat=0.036
scale=0.126 kcat=0.045
scale=0.158 kcat=0.057
scale=0.200 kcat=0.072
scale=0.251 kcat=0.091
scale=0.316 kcat=0.114
scale=0.398 kcat=0.144
scale=0.501 kcat=0.181
scale=0.631 kcat=0.228
scale=0.794 kcat=0.287
scale=1.000 kcat=0.361
scale=1.259 kcat=0.454
scale=1.585 kcat=0.572
scale=1.995 kcat=0.720
scale=2.512 kcat=0.907
scale=3.162 kcat=1.142
scale=3.981 kcat=1.437
scale=5.012 kcat=1.809
scale=6.310 kcat=2.278
scale=7.943 kcat=2.868
scale=10.000        kcat=3.610
scale=12.589        kcat=4.545
scale=15.849        kcat=5.722
scale=19.953        kcat=7.203
scale=25.119        kcat=9.068
scale=31.623        kcat=11.416
scale=39.811        kcat=14.372
scale=50.119        kcat=18.093
scale=63.096        kcat=22.778
scale=79.433        kcat=28.676
scale=100.000       kcat=36.101





[image: ../../../_images/doseR.png]






          

      

      

    

  

    
      
          
            
  
Chemical Oscillators

Chemical Oscillators [https://en.wikipedia.org/wiki/Chemical_clock], also known as chemical clocks, are chemical systems in which the concentrations of one or more reactants undergoes periodic changes.

These Oscillatory reactions can be modelled using moose. The examples below demonstrate different types of chemical oscillators, as well as how they can be simulated using moose. Each example has a short description, the code used in the simulation, and the default (gsl solver) output of the code.

Each example can be found as a python file within the main moose folder under

(...)/moose/moose-examples/tutorials/ChemicalOscillators





In order to run the example, run the script

python filename.py





in command line, where filename.py is the name of the python file you would like to run. The filenames of each example are written in bold at the beginning of their respective sections, and the files themselves can be found in the aformentioned directory.

In chemical models that use solvers, there are optional arguments that allow you to specify which solver you would like to use.

python filename.py [gsl | gssa | ee]





Where:



	gsl: This is the Runge-Kutta-Fehlberg implementation from the GNU Scientific Library (GSL). It is a fifth order variable timestep explicit method. Works well for most reaction systems except if they have very stiff reactions.


	gssl: Optimized Gillespie stochastic systems algorithm, custom implementation. This uses variable timesteps internally. Note that it slows down with increasing numbers of molecules in each pool. It also slows down, but not so badly, if the number of reactions goes up.


	Exponential Euler:This methods computes the solution of partial and ordinary differential equations.







All the following examples can be run with either of the three solvers, each of which has different advantages and disadvantages and each of which might produce a slightly different outcome.

Simply running the file without the optional argument will by default use the gsl solver. These gsl outputs are the ones shown below.











Slow Feedback Oscillator

File name: slowFbOsc.py

This example illustrates loading, and running a kinetic model for a
delayed -ve feedback oscillator, defined in kkit format. The model is
one by Boris N. Kholodenko from Eur J Biochem. (2000) 267(6):1583-8

[image: ../../../_images/Kholodenko_tut.png]
This model has a high-gain MAPK stage, whose effects are visible whem
one looks at the traces from successive stages in the plots. The
upstream pools have small early peaks, and the downstream pools have
large delayed ones. The negative feedback step is mediated by a simple
binding reaction of the end-product of oscillation with an upstream
activator.

We use the gsl solver here. The model already defines some plots and
sets the runtime to 4000 seconds. The model does not really play nicely
with the GSSA solver, since it involves some really tiny amounts of the
MAPKKK.

Things to do with the model:

- Look at model once it is loaded in::

        moose.le( '/model' )
        moose.showfields( '/model/kinetics/MAPK/MAPK' )

- Behold the amplification properties of the cascade. Could do this by blocking the feedback step and giving a small pulse input.
- Suggest which parameters you would alter to change the period of the oscillator:
    - Concs of various molecules, for example::

        ras_MAPKKKK = moose.element( '/model/kinetics/MAPK/Ras_dash_MKKKK' )
        moose.showfields( ras_MAPKKKK )
        ras_MAPKKKK.concInit = 1e-5
    - Feedback reaction rates
    - Rates of all the enzymes::

        for i in moose.wildcardFind( '/##[ISA=EnzBase]'):
                i.kcat *= 10.0





Code:



Show/Hide code
	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	#########################################################################
## This program is part of 'MOOSE', the
## Messaging Object Oriented Simulation Environment.
##           Copyright (C) 2014 Upinder S. Bhalla. and NCBS
## It is made available under the terms of the
## GNU Lesser General Public License version 2.1
## See the file COPYING.LIB for the full notice.
#########################################################################

import moose
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import pylab
import numpy
import sys

def main():

    solver = "gsl"
    mfile = '../../genesis/Kholodenko.g'
    runtime = 5000.0
    if ( len( sys.argv ) >= 2 ):
        solver = sys.argv[1]
    modelId = moose.loadModel( mfile, 'model', solver )
    dt = moose.element( '/clock' ).tickDt[18]
    moose.reinit()
    moose.start( runtime )

    # Display all plots.
    img = mpimg.imread( 'Kholodenko_tut.png' )
    fig = plt.figure( figsize=( 12, 10 ) )
    png = fig.add_subplot( 211 )
    imgplot = plt.imshow( img )
    ax = fig.add_subplot( 212 )
    x = moose.wildcardFind( '/model/#graphs/conc#/#' )
    t = numpy.arange( 0, x[0].vector.size, 1 ) * dt
    ax.plot( t, x[0].vector * 100, 'b-', label='Ras-MKKK * 100' )
    ax.plot( t, x[1].vector, 'y-', label='MKKK-P' )
    ax.plot( t, x[2].vector, 'm-', label='MKK-PP' )
    ax.plot( t, x[3].vector, 'r-', label='MAPK-PP' )
    plt.ylabel( 'Conc (mM)' )
    plt.xlabel( 'Time (seconds)' )
    pylab.legend()
    pylab.show()

# Run the 'main' if this script is executed standalone.
if __name__ == '__main__':
    main()














Output:

[image: ../../../_images/FB.png]












Turing Pattern Oscillator in One Dimension

File name: TuringOneDim.py

This example illustrates how to set up a oscillatory Turing pattern in
1-D using reaction diffusion calculations. Reaction system is:

s ---a---> a  // s goes to a, catalyzed by a.
s ---a---> b  // s goes to b, catalyzed by a.
a ---b---> s  // a goes to s, catalyzed by b.
b -------> s  // b is degraded irreversibly to s.





in sum, a has a positive feedback onto itself and also forms b.
b has a negative feedback onto a. Finally, the diffusion
constant for a is 1/10 that of b.

[image: ../../../_images/turingPatternTut.png]
This chemical system is present in a 1-dimensional (cylindrical)
compartment. The entire reaction-diffusion system is set up within the
script.

Code:



Show/Hide code
	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

	#########################################################################
## This program is part of 'MOOSE', the
## Messaging Object Oriented Simulation Environment.
##           Copyright (C) 2014 Upinder S. Bhalla. and NCBS
## It is made available under the terms of the
## GNU Lesser General Public License version 2.1
## See the file COPYING.LIB for the full notice.
#########################################################################

import math
import numpy
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import moose

def makeModel():

    # create container for model
    r0 = 1e-6       # m
    r1 = 1e-6       # m
    num = 100
    diffLength = 1e-6 # m
    len = num * diffLength  # m
    diffConst = 5e-12 # m^2/sec
    motorRate = 1e-6 # m/sec
    concA = 1 # millimolar
    dt4 = 0.02  # for the diffusion
    dt5 = 0.2   # for the reaction

    model = moose.Neutral( 'model' )
    compartment = moose.CylMesh( '/model/compartment' )
    compartment.r0 = r0
    compartment.r1 = r1
    compartment.x0 = 0
    compartment.x1 = len
    compartment.diffLength = diffLength

    assert( compartment.numDiffCompts == num )

    # create molecules and reactions
    a = moose.Pool( '/model/compartment/a' )
    b = moose.Pool( '/model/compartment/b' )
    s = moose.Pool( '/model/compartment/s' )
    e1 = moose.MMenz( '/model/compartment/e1' )
    e2 = moose.MMenz( '/model/compartment/e2' )
    e3 = moose.MMenz( '/model/compartment/e3' )
    r1 = moose.Reac( '/model/compartment/r1' )
    moose.connect( e1, 'sub', s, 'reac' )
    moose.connect( e1, 'prd', a, 'reac' )
    moose.connect( a, 'nOut', e1, 'enzDest' )
    e1.Km = 1
    e1.kcat = 1

    moose.connect( e2, 'sub', s, 'reac' )
    moose.connect( e2, 'prd', b, 'reac' )
    moose.connect( a, 'nOut', e2, 'enzDest' )
    e2.Km = 1
    e2.kcat = 0.5

    moose.connect( e3, 'sub', a, 'reac' )
    moose.connect( e3, 'prd', s, 'reac' )
    moose.connect( b, 'nOut', e3, 'enzDest' )
    e3.Km = 0.1
    e3.kcat = 1

    moose.connect( r1, 'sub', b, 'reac' )
    moose.connect( r1, 'prd', s, 'reac' )
    r1.Kf = 0.3 # 1/sec
    r1.Kb = 0 # 1/sec

    # Assign parameters
    a.diffConst = diffConst/10
    b.diffConst = diffConst
    s.diffConst = 0

    # Make solvers
    ksolve = moose.Ksolve( '/model/compartment/ksolve' )
    dsolve = moose.Dsolve( '/model/dsolve' )
    # Set up clocks. The dsolver to know before assigning stoich
    moose.setClock( 4, dt4 )
    moose.setClock( 5, dt5 )
    moose.useClock( 4, '/model/dsolve', 'process' )
    # Ksolve must be scheduled after dsolve.
    moose.useClock( 5, '/model/compartment/ksolve', 'process' )

    stoich = moose.Stoich( '/model/compartment/stoich' )
    stoich.compartment = compartment
    stoich.ksolve = ksolve
    stoich.dsolve = dsolve
    stoich.path = "/model/compartment/##"
    assert( dsolve.numPools == 3 )
    a.vec.concInit = [0.1]*num
    a.vec[0].concInit *= 1.2 # slight perturbation at one end.
    b.vec.concInit = [0.1]*num
    s.vec.concInit = [1]*num

def displayPlots():
    a = moose.element( '/model/compartment/a' )
    b = moose.element( '/model/compartment/b' )
    pos = numpy.arange( 0, a.vec.conc.size, 1 )
    pylab.plot( pos, a.vec.conc, label='a' )
    pylab.plot( pos, b.vec.conc, label='b' )
    pylab.legend()
    pylab.show()

def main():
    runtime = 400
    displayInterval = 2
    makeModel()
    dsolve = moose.element( '/model/dsolve' )
    moose.reinit()
    #moose.start( runtime ) # Run the model for 10 seconds.

    a = moose.element( '/model/compartment/a' )
    b = moose.element( '/model/compartment/b' )
    s = moose.element( '/model/compartment/s' )

    img = mpimg.imread( 'turingPatternTut.png' )
    #imgplot = plt.imshow( img )
    #plt.show()

    plt.ion()
    fig = plt.figure( figsize=(12,10) )
    png = fig.add_subplot(211)
    imgplot = plt.imshow( img )
    ax = fig.add_subplot(212)
    ax.set_ylim( 0, 0.5 )
    plt.ylabel( 'Conc (mM)' )
    plt.xlabel( 'Position along cylinder (microns)' )
    pos = numpy.arange( 0, a.vec.conc.size, 1 )
    line1, = ax.plot( pos, a.vec.conc, label='a' )
    line2, = ax.plot( pos, b.vec.conc, label='b' )
    timeLabel = plt.text(60, 0.4, 'time = 0')
    plt.legend()
    fig.canvas.draw()

    for t in range( displayInterval, runtime, displayInterval ):
        moose.start( displayInterval )
        line1.set_ydata( a.vec.conc )
        line2.set_ydata( b.vec.conc )
        timeLabel.set_text( "time = %d" % t )
        fig.canvas.draw()

    print( "Hit 'enter' to exit" )
    raw_input( )



# Run the 'main' if this script is executed standalone.
if __name__ == '__main__':
    main()














Output:

[image: ../../../_images/turing.png]












Relaxation Oscillator

File name: relaxationOsc.py

This example illustrates a Relaxation Oscillator. This is an
oscillator built around a switching reaction, which tends to flip into
one or other state and stay there. The relaxation bit comes in because
once it is in state 1, a slow (relaxation) process begins which
eventually flips it into state 2, and vice versa.

[image: ../../../_images/relaxOsc_tut.png]
The model is based on Bhalla, Biophys J. 2011. It is defined in kkit
format. It uses the deterministic gsl solver by default. You can specify
the stochastic Gillespie solver on the command line

``python relaxationOsc.py gssa``





Things to do with the model:

* Figure out what determines its frequency. You could change
  the initial concentrations of various model entities::

    ma = moose.element( '/model/kinetics/A/M' )
    ma.concInit *= 1.5

  Alternatively, you could scale the rates of molecular traffic
  between the compartments::

    exo = moose.element( '/model/kinetics/exo' )
    endo = moose.element( '/model/kinetics/endo' )
    exo.Kf *= 1.0
    endo.Kf *= 1.0

* Play with stochasticity. The standard thing here is to scale the
  volume up and down::

    compt.volume = 1e-18
    compt.volume = 1e-20
    compt.volume = 1e-21





Code:



Show/Hide code
	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	#########################################################################
## This program is part of 'MOOSE', the
## Messaging Object Oriented Simulation Environment.
##           Copyright (C) 2014 Upinder S. Bhalla. and NCBS
## It is made available under the terms of the
## GNU Lesser General Public License version 2.1
## See the file COPYING.LIB for the full notice.
#########################################################################

import moose
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import pylab
import numpy
import sys

def main():

    solver = "gsl"  # Pick any of gsl, gssa, ee..
    #solver = "gssa"  # Pick any of gsl, gssa, ee..
    mfile = '../../genesis/OSC_Cspace.g'
    runtime = 4000.0
    if ( len( sys.argv ) >= 2 ):
            solver = sys.argv[1]
    modelId = moose.loadModel( mfile, 'model', solver )
    # Increase volume so that the stochastic solver gssa
    # gives an interesting output
    compt = moose.element( '/model/kinetics' )
    compt.volume = 1e-19
    dt = moose.element( '/clock' ).tickDt[18] # 18 is the plot clock.

    moose.reinit()
    moose.start( runtime )

    # Display all plots.
    img = mpimg.imread( 'relaxOsc_tut.png' )
    fig = plt.figure( figsize=(12, 10 ) )
    png = fig.add_subplot( 211 )
    imgplot = plt.imshow( img )
    ax = fig.add_subplot( 212 )
    x = moose.wildcardFind( '/model/#graphs/conc#/#' )
    t = numpy.arange( 0, x[0].vector.size, 1 ) * dt
    ax.plot( t, x[0].vector, 'b-', label=x[0].name )
    ax.plot( t, x[1].vector, 'c-', label=x[1].name )
    ax.plot( t, x[2].vector, 'r-', label=x[2].name )
    ax.plot( t, x[3].vector, 'm-', label=x[3].name )
    plt.ylabel( 'Conc (mM)' )
    plt.xlabel( 'Time (seconds)' )
    pylab.legend()
    pylab.show()

# Run the 'main' if this script is executed standalone.
if __name__ == '__main__':
    main()














Output:

[image: ../../../_images/relax.png]












Repressilator

File name: repressilator.py

This example illustrates the classic Repressilator model, based on
Elowitz and Liebler, Nature 2000. The model has the basic architecture

[image: ../../../_images/repressillatorOsc.png]
where TetR, Lac, and Lcl are genes whose products repress
eachother. The circle symbol indicates inhibition. The model uses the
Gillespie (stochastic) method by default but you can run it using a
deterministic method by saying python repressillator.py gsl

Good things to do with this model include:

* Ask what it would take to change period of repressillator:

    * Change inhibitor rates::

        inhib = moose.element( '/model/kinetics/TetR_gene/inhib_reac' )
        moose.showfields( inhib )
        inhib.Kf *= 0.1

    * Change degradation rates::

        degrade = moose.element( '/model/kinetics/TetR_gene/TetR_degradation' )
        degrade.Kf *= 10.0
* Run in stochastic mode:

    * Change volumes, figure out how many molecules are present::

        lac = moose.element( '/model/kinetics/lac_gene/lac' )
        print lac.n``

    * Find when it becomes hopelessly unreliable with small volumes.





Code:



Show/Hide code
	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

	#########################################################################
## This program is part of 'MOOSE', the
## Messaging Object Oriented Simulation Environment.
##           Copyright (C) 2014 Upinder S. Bhalla. and NCBS
## It is made available under the terms of the
## GNU Lesser General Public License version 2.1
## See the file COPYING.LIB for the full notice.
#########################################################################

import moose
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import pylab
import numpy
import sys

def main():

    #solver = "gsl"  # Pick any of gsl, gssa, ee..
    solver = "gssa"  # Pick any of gsl, gssa, ee..
    mfile = '../../genesis/Repressillator.g'
    runtime = 6000.0
    if ( len( sys.argv ) >= 2 ):
        solver = sys.argv[1]
    modelId = moose.loadModel( mfile, 'model', solver )
    # Increase volume so that the stochastic solver gssa
    # gives an interesting output
    compt = moose.element( '/model/kinetics' )
    compt.volume = 1e-19
    dt = moose.element( '/clock' ).tickDt[18]

    moose.reinit()
    moose.start( runtime )

    # Display all plots.
    img = mpimg.imread( 'repressillatorOsc.png' )
    fig = plt.figure( figsize=(12, 10 ) )
    png = fig.add_subplot( 211 )
    imgplot = plt.imshow( img )
    ax = fig.add_subplot( 212 )
    x = moose.wildcardFind( '/model/#graphs/conc#/#' )
    plt.ylabel( 'Conc (mM)' )
    plt.xlabel( 'Time (seconds)' )
    for x in moose.wildcardFind( '/model/#graphs/conc#/#' ):
        t = numpy.arange( 0, x.vector.size, 1 ) * dt
        pylab.plot( t, x.vector, label=x.name )
    pylab.legend()
    pylab.show()

# Run the 'main' if this script is executed standalone.
if __name__ == '__main__':
    main()














Output:

[image: ../../../_images/repris.png]






          

      

      

    

  

    
      
          
            
  
Squid giant axon

This tutorial is an interactive graphical simulation of a squid giant axon,
closely based on the ‘Squid’ demo by Mark Nelson which ran in GENESIS.

The squid giant axon [https://en.wikipedia.org/wiki/Squid_giant_axon] is a very large axon that plays a role in the water jet propulsion systems of squid.

Alan Hodgkin, Andrew Huxley, and John Eccles won the nobel prize in physiology or medicine for their pioneering work on the squid axon. Hodgin and Huxley were the first to qualitatively describe action potentials within neurons. The large diameter of the squid giant axon (0.5 mm to 1 mm) allowed them to affix electrodes and voltage clamps to precisely measure the action potential as it travelled through the axon. They later went on to mathematically describe this in an equation that paved the road for mathematical and computational biology’s development.

This tutorial models the Hodglin-Huxley equation within a neat graphical interface that allows one to change different parameters and see how it affects the resulting action potential.


[image: Hodgkin-Huxley's squid giant axon experiment]
The GUI of the simulation.



The tutorial can be run from within the .../moose/moose-examples/squid directory by running

python squid_demo.py





in command line from within the directory.

Once the model loads, you can access the inbuilt documentation by clicking on Help running in the top right of the window as shown below


[image: Help running]
The “Help running” tab is highlighted in red



The page that pops up will take you through using the GUI, changing the parameters and understanding the model.

For more details on the biophysics behind the model, you can click on Help biophysics tab to the immediate right of the Help running tab (note that for smaller default window sizes, the tab might not be visible and can be accessed by clicking the >> on the top right corner of the GUI).





          

      

      

    

  

    
      
          
            
  
Graphics



	MOOGLI
	Use Moogli for plotting





	MatPlotLib
	Displaying time-series plots

	Animation of values along axis













          

      

      

    

  

    
      
          
            
  
MOOGLI


Use Moogli for plotting






MatPlotLib


Displaying time-series plots




Animation of values along axis







          

      

      

    

  

    
      
          
            
  
References


How to use the documentation

MOOSE documentation is split into Python documentation and builtin
documentation. The functions and classes that are only part of the
Python interface can be viewed via Python’s builtin help
function:

>>> help(moose.connect)





The documentation built into main C++ code of MOOSE can be accessed
via the module function doc:

>>> moose.doc('Neutral')





To get documentation about a particular field:

>>> moose.doc('Neutral.childMsg')







	MOOSE Functions
	element

	getFieldNames

	copy

	move

	delete

	useClock

	setClock

	start

	reinit

	stop

	isRunning

	exists

	loadModel

	connect

	getCwe

	setCwe

	getFieldDict

	getField

	seed

	rand

	wildcardFind

	quit





	Class Hierarchy











          

      

      

    

  

    
      
          
            
  
MOOSE Functions


element

moose.element(arg) -> moose object

Convert a path or an object to the appropriate builtin moose class instance.


	argstr/vec/moose object

	path of the moose element to be converted or another element (possibly available as a superclass instance).



	Returns - melement

	MOOSE element (object) corresponding to the arg converted to write subclass.








getFieldNames

moose.getFieldNames(className, finfoType=’valueFinfo’) -> tuple

Get a tuple containing the name of all the fields of finfoType kind.


	classNamestring

	Name of the class to look up.



	finfoTypestring

	The kind of field -
valueFinfo -
srcFinfo   -
destFinfo  -
lookupFinfo-
fieldElementFinfo -



	Returns - tuple

	Names of the fields of type finfoType in class className.








copy

moose.copy(src, dest, name, n, toGlobal, copyExtMsg) -> bool

Make copies of a moose object.


	srcvec, element or str

	source object.



	destvec, element or str

	Destination object to copy into.



	namestr

	Name of the new object. If omitted, name of the original will be used.



	nint

	Number of copies to make.



	toGlobalint

	Relevant for parallel environments only. If false, the copies will
reside on local node, otherwise all nodes get the copies.



	copyExtMsgint

	If true, messages to/from external objects are also copied.



	Returns - vec

	newly copied vec








move


	moose.move(…)

	Move a vec object to a destination.








delete


	moose.delete(…)

	delete(obj)->None





Delete the underlying moose object. This does not delete any of the
Python objects referring to this vec but does invalidate them. Any
attempt to access them will raise a ValueError.


	idvec

	vec of the object to be deleted.





Returns - None




useClock

moose.useClock(tick, path, fn)

schedule fn function of every object that matches path on tick no. tick.

Most commonly the function is ‘process’.  NOTE: unlike earlier versions, now
autoschedule is not available. You have to call useClock for every element that
should be updated during the  simulation.

The sequence of clockticks with the same dt is according to their number.
This is utilized for controlling the order of updates in various objects where it matters. The following convention should be observed when assigning clockticks to various components of a model:

Clock ticks 0-3 are for electrical (biophysical) components, 4 and 5 are for chemical kinetics, 6 and 7 are for lookup tables and stimulus, 8 and 9 are for recording tables.

Generally, process is the method to be assigned a clock tick. Notable exception is init method of Compartment class which is assigned tick 0.



	0 : Compartment: init


	1 : Compartment: process


	2 : HHChannel and other channels: process


	3 : CaConc : process


	4,5 : Elements for chemical kinetics : process


	6,7 : Lookup (tables), stimulus : process


	8,9 : Tables for plotting : process








	tickint

	tick number on which the targets should be scheduled.



	pathstr

	path of the target element(s). This can be a wildcard also.



	fnstr

	name of the function to be called on each tick. Commonly process.





Examples -

In multi-compartmental neuron model a compartment’s membrane potential (Vm) is dependent on its neighbours’ membrane potential. Thus it must get the neighbour’s present Vm before computing its own Vm in next time step. This ordering is achieved by scheduling the init function, which communicates membrane potential, on tick 0 and process function on tick 1.:

>>> moose.useClock(0, '/model/compartment_1', 'init')
>>> moose.useClock(1, '/model/compartment_1', 'process')








setClock

moose.setClock(tick, dt)

set the ticking interval of tick to dt.

A tick with interval dt will call the functions scheduled on that tick every dt timestep.


	tickint

	tick number



	dtdouble

	ticking interval








start

moose.start(time, notify = False) -> None

Run simulation for t time. Advances the simulator clock by t
time. If ‘notify = True’, a message is written to terminal whenever
10% of simulation time is over.

After setting up a simulation, YOU MUST CALL MOOSE.REINIT() before
CALLING MOOSE.START() TO EXECUTE THE SIMULATION. Otherwise, the
simulator behaviour will be undefined. Once moose.reinit() has been
called, you can call moose.start(t) as many time as you like. This
will continue the simulation from the last state for t time.


	tfloat

	duration of simulation.



	notifybool

	default False. If True, notify user whenever 10% of simultion
is over.





Returns - None




reinit

moose.reinit() -> None

Reinitialize simulation.

This function (re)initializes moose simulation. It must be called
before you start the simulation (see moose.start). If you want to
continue simulation after you have called moose.reinit() and
moose.start(), you must NOT call moose.reinit() again. Calling
moose.reinit() again will take the system back to initial setting
(like clear out all data recording tables, set state variables to
their initial values, etc.




stop


	moose.stop(…)

	Stop simulation








isRunning


	moose.isRunning(…)

	True if the simulation is currently running.








exists


	moose.exists(…)

	True if there is an object with specified path.








loadModel


	moose.loadModel(…)

	loadModel(filename, modelpath, solverclass) -> vec

Load model from a file to a specified path.



	filenamestr

	model description file.



	modelpathstr

	moose path for the top level element of the model to be created.



	solverclassstr, optional

	solver type to be used for simulating the model.



	Returns - vec

	loaded model container vec.








connect

moose.connect(src, srcfield, destobj, destfield[,msgtype]) -> bool


Create a message between src_field on src object to dest_field on dest object.
This function is used mainly, to say, connect two entities, and to denote what kind of
give-and-take relationship they share.It enables the ‘destfield’ (of
the ‘destobj’) to acquire the data, from ‘srcfield’(of the ‘src’).





	srcelement/vec/string

	the source object (or its path)
(the one that provides information)



	srcfieldstr

	source field on self.(type of the information)



	destobjelement

	Destination object to connect to.
(The one that need to get information)



	destfieldstr

	field to connect to on destobj.



	msgtypestr

	type of the message. Can be
Single -
OneToAll -
AllToOne -
OneToOne -
Reduce -
Sparse -
Default: Single.



	Returns - msgmanagermelement

	message-manager for the newly created message.





Examples -
Connect the output of a pulse generator to the input of a spike generator:

>>> pulsegen = moose.PulseGen('pulsegen')
>>> spikegen = moose.SpikeGen('spikegen')
>>> pulsegen.connect('output', spikegen, 'Vm')








getCwe


	moose.getCwe(…)

	Get the current working element. ‘pwe’ is an alias of this function.








setCwe


	moose.setCwe(…)

	Set the current working element. ‘ce’ is an alias of this function








getFieldDict

moose.getFieldDict(className, finfoType) -> dict


Get dictionary of field names and types for specified class.





	classNamestr

	MOOSE class to find the fields of.



	finfoTypestr (optional)

	Finfo type of the fields to find. If empty or not specified, all
fields will be retrieved.



	Returns - dict

	field names and their types.



	Notes -

	This behaviour is different from getFieldNames where only
valueFinfo`s are returned when `finfoType remains unspecified.



	Examples -

	List all the source fields on class Neutral:

>>> moose.getFieldDict('Neutral', 'srcFinfo')
>>> {'childMsg': 'int'}












getField


	moose.getField(…)

	getField(element, field, fieldtype) – Get specified field of specified type from object vec.








seed


	moose.seed(…)

	moose.seed(seedvalue) -> seed

Reseed MOOSE random number generator.



	seedint

	Value to use for seeding.
All RNGs in moose except rand functions in moose.Function
expression use this seed.
By default (when this function is not called) seed is initializecd
to some random value using system random device (if available).

default: random number generated using system random device

Returns - None








rand


	moose.rand(…)

	moose.rand() -> [0,1)

Returns - float in [0, 1) real interval generated by MT19937.

Notes -
MOOSE does not automatically seed the random number generator. You
must explicitly call moose.seed() to create a new sequence of random
numbers each time.








wildcardFind

moose.wildcardFind(expression) -> tuple of melements.


Find an object by wildcard.





	expressionstr

	MOOSE allows wildcard expressions of the form:

{PATH}/{WILDCARD}[{CONDITION}]





where {PATH} is valid path in the element tree.
{WILDCARD} can be # or ##.

# causes the search to be restricted to the children of the
element specified by {PATH}.

## makes the search to recursively go through all the descendants
of the {PATH} element.
{CONDITION} can be:

TYPE={CLASSNAME} : an element satisfies this condition if it is of
class {CLASSNAME}.
ISA={CLASSNAME} : alias for TYPE={CLASSNAME}
CLASS={CLASSNAME} : alias for TYPE={CLASSNAME}
FIELD({FIELDNAME}){OPERATOR}{VALUE} : compare field {FIELDNAME} with
{VALUE} by {OPERATOR} where {OPERATOR} is a comparison operator (=,
!=, >, <, >=, <=).





For example, /mymodel/##[FIELD(Vm)>=-65] will return a list of all
the objects under /mymodel whose Vm field is >= -65.


	Returns - tuple

	all elements that match the wildcard.












quit


Finalize MOOSE threads and quit MOOSE. This is made available for
debugging purpose only. It will automatically get called when moose
module is unloaded. End user should not use this function.





	moose.quit(…)

	Finalize MOOSE threads and quit MOOSE. This is made available for debugging purpose only. It will automatically get called when moose module is unloaded. End user should not use this function.











          

      

      

    

  

    
      
          
            
  
Class Hierarchy


	__builtin__.object
- Melement



	
	Neutral

	

	Adaptor


	Annotator


	Arith








	
	CaConcBase

	
	CaConc


	ZombieCaConc










	
	ChanBase

	
	HHChannel2D


	
	HHChannelBase

	
	HHChannel


	ZombieHChannel










	Leakage


	MarkovChannel


	MgBlock


	
	SynChan

	
	NMDAChan


















	
	ChemCompt

	
	CubeMesh


	CylMesh


	NeuroMesh


	PsdMesh


	SpineMesh










	Cinfo


	Clock


	
	CompartmentBase

	
	
	Compartment

	
	
	IntFireBase

	
	
	AdThreshIF

	
	
	ExIF

	
	AdExIF










	IzhIF


	LIF


	QIF










	SymCompartment










	ZombieCompartment










	
	DifBufferBase

	
	DifBuffer










	
	DifShellBase

	
	DifShell










	DiffAmp


	Dsolve


	
	EnzBase

	
	
	CplxEnzBase

	
	Enz


	ZombieEnz










	MMenz


	ZombieMMenz










	Finfo


	Func


	
	Function

	
	ZombieFunction










	GapJunction


	Group


	Gsolve


	
	HDF5WriterBase

	
	
	HDF5DataWriter

	
	NSDFWriter


















	HHGate


	HHGate2D


	HSolve


	IntFire


	Interpol2D


	IzhikevichNrn


	Ksolve


	MMPump


	MarkovGslSolver


	MarkovRateTable


	
	MarkovSolverBase

	
	MarkovSolver










	MeshEntry


	
	Msg

	
	DiagonalMsg


	OneToAllMsg


	OneToOneDataIndexMsg


	OneToOneMsg


	SingleMsg


	SparseMsg










	Mstring


	Nernst


	Neuron


	PIDController


	
	PoolBase

	
	
	Pool

	
	BufPool










	
	ZombiePool

	
	ZombieBufPool


















	PostMaster


	PulseGen


	PyRun


	RC


	
	RandGenerator

	
	BinomialRng


	ExponentialRng


	GammaRng


	NormalRng


	PoissonRng


	UniformRng










	RandSpike


	
	ReacBase

	
	Reac


	ZombieReac










	Shell


	Species


	SpikeGen


	Spine


	
	Stats

	
	Spike










	SteadyState


	Stoich


	
	SynHandlerBase

	
	GraupnerBrunel2012CaPlasticitySynHandler


	STDPSynHandler


	SeqSynHandler


	SimpleSynHandler










	
	Synapse

	
	STDPSynapse










	
	TableBase

	
	Interpol


	StimulusTable


	Streamer


	Table


	Table2


	TimeTable










	VClamp


	
	Variable

	
	InputVariable










	VectorTable










	testSched










	vec








	Moose_BuiltIn












          

      

      

    

  

    
      
          
            
  
Doxygen

Here you can find all the references necessary for MOOSE.

Click here





          

      

      

    

  

    
      
          
            
  
Release Notes


Todo

Collect release notes from github.







          

      

      

    

  

    
      
          
            
  
Series chennapoda


Version 3.2.0


	Improved SBML support.


	NeuroML2 support (Thanks to Padraig Glesson)


	Various bugfixes.









Series chamcham


Version 3.1.3







          

      

      

    

  

    
      
          
            
  
Known issues

Full report can be found at the following places


	Related to build, packages and documentation [https://github.com/BhallaLab/moose/issues]


	Related to moose-core [https://github.com/BhallaLab/moose-core/issues]


	Related to MOOSE-GUI [https://github.com/BhallaLab/moose-gui/issues]


	Related to moogli [https://github.com/BhallaLab/moogli/issues]








          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z
 


A


  	
      	A (HHGate attribute)

      
        	(HHGate2D attribute)


      


      	a (IzhIF attribute)

      
        	(IzhikevichNrn attribute)


      


      	a0 (AdExIF attribute)

      
        	(AdThreshIF attribute)


        	(IzhIF attribute)


        	(QIF attribute)


      


      	abs_refract (RandSpike attribute)

      
        	(SpikeGen attribute)


      


      	absoluteAccuracy (MarkovGslSolver attribute)


      	accommodating (IzhikevichNrn attribute)


      	activation() (IntFire method)

      
        	(IntFireBase method)


        	(SynChan method)


      


      	activationOut (SynHandlerBase attribute)


      	Adaptor (built-in class)


      	addMsg() (Shell method)


      	addPostSpike() (GraupnerBrunel2012CaPlasticitySynHandler method)

      
        	(STDPSynHandler method)


      


      	addSpike() (SpikeStats method), [1]

      
        	(Synapse method)


      


      	addTable() (Streamer method)


      	addTables() (Streamer method)


  

  	
      	aDest() (IzhikevichNrn method)


      	AdExIF (built-in class)


      	adjacent (Msg attribute)


      	AdThreshIF (built-in class)


      	alpha (GammaRng attribute), [1]

      
        	(HHGate attribute)


        	(IzhikevichNrn attribute)


      


      	alphaParms (HHGate attribute)


      	alwaysDiffuse (CubeMesh attribute)


      	aMinus (STDPSynHandler attribute)


      	aMinus0 (STDPSynHandler attribute)


      	Annotator (built-in class)


      	anyValue (Arith attribute)


      	aPlus (STDPSynapse attribute)


      	aPlus0 (STDPSynHandler attribute)


      	arg1() (Arith method)


      	arg1Value (Arith attribute)


      	arg1x2() (Arith method)


      	arg2() (Arith method)


      	arg3() (Arith method)


      	Arith (built-in class)


      	assignIntCa() (NMDAChan method)


      	axial (CompartmentBase attribute)


      	axialOut (CompartmentBase attribute)


  





B


  	
      	B (CaConcBase attribute)

      
        	(HHGate attribute)


        	(HHGate2D attribute)


      


      	b (IzhIF attribute)

      
        	(IzhikevichNrn attribute)


      


      	b0 (AdExIF attribute)

      
        	(IzhIF attribute)


      


      	badStoichiometry (SteadyState attribute)


      	basal() (CaConcBase method)


      	baseClass (Cinfo attribute)


      	baseDt (Clock attribute)


      	baseLevel (PulseGen attribute), [1]


  

  	
      	bDest() (IzhikevichNrn method)


      	beta (HHGate attribute)

      
        	(IzhikevichNrn attribute)


      


      	BinomialRng (built-in class)


      	bistable (GraupnerBrunel2012CaPlasticitySynHandler attribute)


      	buffer (DifShell attribute)


      	bufferSize (PostMaster attribute)


      	buildDefaultMesh() (ChemCompt method)


      	buildMeshJunctions() (Dsolve method)


      	buildNeuroMeshJunctions() (Dsolve method)


      	buildSegmentTree() (Neuron method)


      	buildXreacs() (Stoich method)


  





C


  	
      	C (DifShell attribute)


      	c (Function attribute)

      
        	(IzhikevichNrn attribute)


      


      	c0 (IzhIF attribute)


      	Ca (CaConcBase attribute)

      
        	(GraupnerBrunel2012CaPlasticitySynHandler attribute)


      


      	Ca_base (CaConcBase attribute)


      	caAdvance (HSolve attribute)


      	CaBasal (CaConcBase attribute)


      	cable() (CompartmentBase method)


      	CaConc (built-in class)


      	CaConcBase (built-in class)


      	caDiv (HSolve attribute)


      	CaInit (GraupnerBrunel2012CaPlasticitySynHandler attribute)


      	caMax (HSolve attribute)


      	caMin (HSolve attribute)


      	CaPost (GraupnerBrunel2012CaPlasticitySynHandler attribute)


      	CaPre (GraupnerBrunel2012CaPlasticitySynHandler attribute)


      	cDest() (IzhikevichNrn method)


      	ceiling (CaConcBase attribute)


      	Ceq (DifShell attribute)


      	ChanBase (built-in class)


      	channel (ChanBase attribute)

      
        	(CompartmentBase attribute)


        	(IzhikevichNrn attribute)


        	(MarkovRateTable attribute)


        	(MarkovSolverBase attribute)


      


      	channel1 (GapJunction attribute)


      	channel1Out (GapJunction attribute)


      	channel2 (GapJunction attribute)


      	channel2Out (GapJunction attribute)


      	channelDistribution (Neuron attribute)


      	channelOut (ChanBase attribute)


      	ChemCompt (built-in class)


      	childOut (Neutral attribute)


      	children (Neutral attribute)


      	chunkSize (HDF5WriterBase attribute)


      	ci() (Nernst method)


      	Cin (Nernst attribute)


      	Cinfo (built-in class)


      	className (Neutral attribute)


      	clear() (SparseMsg method)


      	clearVec() (TableBase method)


      	Clock (built-in class)


      	clockControl (Clock attribute)


      	close() (HDF5WriterBase method)


      	Cm (CompartmentBase attribute)


      	CM (Neuron attribute)


      	CMg (MgBlock attribute)

      
        	(NMDAChan attribute)


      


  

  	
      	co() (Nernst method)


      	color (Annotator attribute)


      	columnIndex (Stoich attribute)


      	command (PIDController attribute)

      
        	(VClamp attribute)


      


      	commandIn() (PIDController method)

      
        	(VClamp method)


      


      	compareVec() (TableBase method)


      	compareXplot() (TableBase method)


      	Compartment (built-in class)


      	compartment (Dsolve attribute)

      
        	(Ksolve attribute)


        	(Stoich attribute)


      


      	CompartmentBase (built-in class)


      	compartmentLengthInLambdas (Neuron attribute)


      	compartments (Neuron attribute)


      	compartmentsFromExpression (Neuron attribute)


      	compression (HDF5WriterBase attribute)


      	compressor (HDF5WriterBase attribute)


      	conc (PoolBase attribute)


      	concen() (HHChannel2D method)

      
        	(HHChannelBase method)


      


      	concen2() (HHChannel2D method)


      	concentrationOut (DifShell attribute)


      	concInit (PoolBase attribute)


      	concK1 (CplxEnzBase attribute)


      	concOut (CaConcBase attribute)


      	condFraction (NMDAChan attribute)


      	convergenceCriterion (SteadyState attribute)


      	Coordinates (MeshEntry attribute)


      	coords (CubeMesh attribute)

      
        	(CylMesh attribute)


      


      	copy() (Shell method)


      	count (PulseGen attribute), [1]


      	Cout (Nernst attribute)


      	cplx (CplxEnzBase attribute)


      	cplxDest() (CplxEnzBase method)


      	CplxEnzBase (built-in class)


      	cplxOut (CplxEnzBase attribute)


      	create() (Shell method)


      	createGate() (HHChannelBase method)


      	CubeMesh (built-in class)


      	current (VClamp attribute)


      	current() (CaConcBase method)


      	currentFraction() (CaConcBase method)


      	currentOut (VClamp attribute)


      	currentStep (Clock attribute)


      	currentTime (Clock attribute)


      	cylinder (SymCompartment attribute)


      	cylinderOut (SymCompartment attribute)


      	CylMesh (built-in class)


  





D


  	
      	D (DifShell attribute)


      	d (IzhIF attribute)

      
        	(IzhikevichNrn attribute)


      


      	dDest() (IzhikevichNrn method)


      	decrease() (CaConcBase method)


      	decrement() (Pool method)


      	defaultTick (Clock attribute)


      	delay (PulseGen attribute), [1]

      
        	(Synapse attribute)


      


      	delayD (GraupnerBrunel2012CaPlasticitySynHandler attribute)


      	delayIn() (PulseGen method), [1]


      	delete() (Shell method)


      	deltaThresh (ExIF attribute)


      	dendVoxelsOnCompartment (NeuroMesh attribute)


      	derivative (Func attribute)

      
        	(Function attribute)


        	(PIDController attribute)


      


      	derivativeOut (Func attribute)

      
        	(Function attribute)


      


      	dest (Finfo attribute)


      	destFields (Neutral attribute)


      	destFieldsOnE1 (Msg attribute)


      	destFieldsOnE2 (Msg attribute)


      	DiagonalMsg (built-in class)


      	diameter (CaConcBase attribute)

      
        	(CompartmentBase attribute)


        	(DifShell attribute)


      


      	DiffAmp (built-in class)


      	diffConst (PoolBase attribute)


  

  	
      	diffLength (CylMesh attribute)

      
        	(NeuroMesh attribute)


      


      	diffScale (Dsolve attribute)


      	DiffusionArea (MeshEntry attribute)


      	DiffusionScaling (MeshEntry attribute)


      	diffVol1 (Dsolve attribute)


      	diffVol2 (Dsolve attribute)


      	DifShell (built-in class)


      	dimensions (MeshEntry attribute)


      	dirpath (Annotator attribute)


      	displace() (CompartmentBase method)


      	distal (SymCompartment attribute)


      	distalOut (SymCompartment attribute), [1], [2]


      	divs (HHGate attribute)


      	docs (Cinfo attribute)

      
        	(Finfo attribute)


      


      	doLoop (StimulusTable attribute)


      	doubleAttr (HDF5WriterBase attribute)


      	doubleVecAttr (HDF5WriterBase attribute)


      	Dsolve (built-in class)


      	dsolve (Stoich attribute)


      	dt (HSolve attribute)

      
        	(Neutral attribute)


      


      	dts (Clock attribute)


      	dx (CubeMesh attribute)

      
        	(Interpol2D attribute)


      


      	dy (CubeMesh attribute)

      
        	(Interpol2D attribute)


      


      	dz (CubeMesh attribute)


  





E


  	
      	E (Nernst attribute)


      	e1 (Msg attribute)


      	e2 (Msg attribute)


      	e_previous (PIDController attribute)


      	edgeTriggered (SpikeGen attribute)


      	eigenvalues (SteadyState attribute)


      	Ek (ChanBase attribute)


      	elecComptList (NeuroMesh attribute)

      
        	(PsdMesh attribute)


        	(SpineMesh attribute)


      


      	elecComptMap (NeuroMesh attribute)

      
        	(PsdMesh attribute)


        	(SpineMesh attribute)


      


      	electrotonicDistanceFromSoma (Neuron attribute)


      	Em (CompartmentBase attribute)

      
        	(Neuron attribute)


      


      	endVoxelInCompt (NeuroMesh attribute)

      
        	(PsdMesh attribute)


        	(SpineMesh attribute)


      


  

  	
      	Enz (built-in class)


      	enz (CplxEnzBase attribute)


      	EnzBase (built-in class)


      	enzDest() (CplxEnzBase method)

      
        	(EnzBase method)


      


      	enzOut (CplxEnzBase attribute)


      	Eout (Nernst attribute)


      	epsAbs (Ksolve attribute)


      	epsRel (Ksolve attribute)


      	eqTauPump() (DifShell method)


      	error (PIDController attribute)


      	estimatedDt (Ksolve attribute)


      	eventOut (TimeTable attribute)


      	ExIF (built-in class)


      	ExponentialRng (built-in class)


      	expr (Func attribute)

      
        	(Function attribute)


      


      	extCa (NMDAChan attribute)


  





F


  	
      	fieldIndex (Neutral attribute)


      	fieldName (Finfo attribute)


      	filename (HDF5WriterBase attribute)

      
        	(TimeTable attribute)


      


      	filterXreacs() (Stoich method)


      	fInflux() (DifShell method)


      	Finfo (built-in class)


      	finished (Clock attribute)


      	firstDelay (PulseGen attribute), [1]


      	firstLevel (PulseGen attribute), [1]


      	firstWidth (PulseGen attribute), [1]


  

  	
      	floor (CaConcBase attribute)


      	flush() (HDF5WriterBase method)


      	flushLimit (HDF5DataWriter attribute)


      	fluxFromIn() (DifShell method)


      	fluxFromOut() (DifShell method)


      	format (Streamer attribute)

      
        	(Table attribute)


        	(Table2 attribute)


      


      	fOutflux() (DifShell method)


      	Func (built-in class)


      	function (Arith attribute)


      	Function (built-in class)


  





G


  	
      	gain (DiffAmp attribute)

      
        	(PIDController attribute)


        	(VClamp attribute)


      


      	gainDest() (PIDController method)


      	gainIn() (DiffAmp method)


      	gamma (IzhikevichNrn attribute)


      	gammaD (GraupnerBrunel2012CaPlasticitySynHandler attribute)


      	gammaP (GraupnerBrunel2012CaPlasticitySynHandler attribute)


      	GammaRng (built-in class), [1]


      	GapJunction (built-in class)


      	Gbar (ChanBase attribute)


      	gbar (MarkovChannel attribute)


      	geometricalDistanceFromSoma (Neuron attribute)


      	geometryPolicy (NeuroMesh attribute)


      	getA() (HHGate method)

      
        	(HHGate2D method)


        	(IzhIF method)


        	(IzhikevichNrn method)


      


      	getA0() (AdExIF method)

      
        	(AdThreshIF method)


        	(IzhIF method)


        	(QIF method)


      


      	getAbs_refract() (RandSpike method)

      
        	(SpikeGen method)


      


      	getAbsoluteAccuracy() (MarkovGslSolver method)


      	getAccommodating() (IzhikevichNrn method)


      	getAdjacent() (Msg method)


      	getAlpha() (GammaRng method), [1]

      
        	(HHGate method)


        	(IzhikevichNrn method)


      


      	getAlphaParms() (HHGate method)


      	getAlwaysDiffuse() (CubeMesh method)


      	getAMinus() (STDPSynHandler method)


      	getAMinus0() (STDPSynHandler method)


      	getAnyValue() (Arith method)


      	getAPlus() (STDPSynapse method)


      	getAPlus0() (STDPSynHandler method)


      	getArg1Value() (Arith method)


      	getB() (CaConcBase method)

      
        	(HHGate method)


        	(HHGate2D method)


        	(IzhIF method)


        	(IzhikevichNrn method)


      


      	getB0() (AdExIF method)

      
        	(IzhIF method)


      


      	getBadStoichiometry() (SteadyState method)


      	getBaseClass() (Cinfo method)


      	getBaseDt() (Clock method)


      	getBaseLevel() (PulseGen method), [1]


      	getBeta() (HHGate method)

      
        	(IzhikevichNrn method)


      


      	getBistable() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	getBufferSize() (PostMaster method)


      	getC() (DifShell method)

      
        	(Function method)


        	(IzhikevichNrn method)


      


      	getC0() (IzhIF method)


      	getCa() (CaConcBase method)

      
        	(GraupnerBrunel2012CaPlasticitySynHandler method)


      


      	getCa_base() (CaConcBase method)


      	getCaAdvance() (HSolve method)


      	getCaBasal() (CaConcBase method)


      	getCaDiv() (HSolve method)


      	getCaInit() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	getCaMax() (HSolve method)


      	getCaMin() (HSolve method)


      	getCaPost() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	getCaPre() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	getCeiling() (CaConcBase method)


      	getCeq() (DifShell method)


      	getChannelDistribution() (Neuron method)


      	getChildren() (Neutral method)


      	getChunkSize() (HDF5WriterBase method)


      	getCin() (Nernst method)


      	getClassName() (Neutral method)


      	getCm() (CompartmentBase method)


      	getCM() (Neuron method)


      	getCMg() (MgBlock method)

      
        	(NMDAChan method)


      


      	getColor() (Annotator method)


      	getColumnIndex() (Stoich method)


      	getCommand() (PIDController method)

      
        	(VClamp method)


      


      	getCompartment() (Dsolve method)

      
        	(Ksolve method)


        	(Stoich method)


      


      	getCompartmentLengthInLambdas() (Neuron method)


      	getCompartments() (Neuron method)


      	getCompartmentsFromExpression() (Neuron method)


      	getCompression() (HDF5WriterBase method)


      	getCompressor() (HDF5WriterBase method)


      	getConc() (PoolBase method)


      	getConcInit() (PoolBase method)


      	getConcK1() (CplxEnzBase method)


      	getCondFraction() (NMDAChan method)


      	getConvergenceCriterion() (SteadyState method)


      	getCoordinates() (MeshEntry method)


      	getCoords() (CubeMesh method)

      
        	(CylMesh method)


      


      	getCount() (PulseGen method), [1]


      	getCout() (Nernst method)


      	getCurrent() (VClamp method)


      	getCurrentStep() (Clock method)


      	getCurrentTime() (Clock method)


      	getD() (DifShell method)

      
        	(IzhIF method)


        	(IzhikevichNrn method)


      


      	getDefaultTick() (Clock method)


      	getDelay() (PulseGen method), [1]

      
        	(Synapse method)


      


      	getDelayD() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	getDeltaThresh() (ExIF method)


      	getDendVoxelsOnCompartment() (NeuroMesh method)


      	getDerivative() (Func method)

      
        	(Function method)


        	(PIDController method)


      


      	getDest() (Finfo method)


      	getDestFields() (Neutral method)


      	getDestFieldsOnE1() (Msg method)


      	getDestFieldsOnE2() (Msg method)


      	getDiameter() (CaConcBase method)

      
        	(CompartmentBase method)


        	(DifShell method)


      


      	getDiffConst() (PoolBase method)


      	getDiffLength() (CylMesh method)

      
        	(NeuroMesh method)


      


      	getDiffScale() (Dsolve method)


      	getDiffusionArea() (MeshEntry method)


      	getDiffusionScaling() (MeshEntry method)


      	getDiffVol1() (Dsolve method)


      	getDiffVol2() (Dsolve method)


      	getDimensions() (MeshEntry method)


      	getDirpath() (Annotator method)


      	getDivs() (HHGate method)


      	getDocs() (Cinfo method)

      
        	(Finfo method)


      


      	getDoLoop() (StimulusTable method)


      	getDoubleAttr() (HDF5WriterBase method)


      	getDoubleVecAttr() (HDF5WriterBase method)


      	getDsolve() (Stoich method)


      	getDt() (HSolve method)

      
        	(Neutral method)


      


      	getDts() (Clock method)


      	getDx() (CubeMesh method)

      
        	(Interpol2D method)


      


      	getDy() (CubeMesh method)

      
        	(Interpol2D method)


      


      	getDz() (CubeMesh method)


      	getE() (Nernst method)


      	getE1() (Msg method)


      	getE2() (Msg method)


      	getE_previous() (PIDController method)


      	getEdgeTriggered() (SpikeGen method)


      	getEigenvalues() (SteadyState method)


      	getEk() (ChanBase method)


      	getElecComptList() (NeuroMesh method)

      
        	(PsdMesh method)


        	(SpineMesh method)


      


      	getElecComptMap() (NeuroMesh method)

      
        	(PsdMesh method)


        	(SpineMesh method)


      


      	getElectrotonicDistanceFromSoma() (Neuron method)


      	getEm() (CompartmentBase method)

      
        	(Neuron method)


      


      	getEndVoxelInCompt() (NeuroMesh method)

      
        	(PsdMesh method)


        	(SpineMesh method)


      


      	getEpsAbs() (Ksolve method)


      	getEpsRel() (Ksolve method)


      	getError() (PIDController method)


      	getEstimatedDt() (Ksolve method)


      	getExpr() (Func method)

      
        	(Function method)


      


      	getExtCa() (NMDAChan method)


      	getFieldIndex() (Neutral method)


      	getFieldName() (Finfo method)


      	getFilename() (HDF5WriterBase method)

      
        	(TimeTable method)


      


      	getFirstDelay() (PulseGen method), [1]


      	getFirstLevel() (PulseGen method), [1]


      	getFirstWidth() (PulseGen method), [1]


      	getFloor() (CaConcBase method)


      	getFlushLimit() (HDF5DataWriter method)


      	getFormat() (Streamer method)

      
        	(Table method)


        	(Table2 method)


      


      	getFunction() (Arith method)


      	getGain() (DiffAmp method)

      
        	(PIDController method)


        	(VClamp method)


      


      	getGamma() (IzhikevichNrn method)


      	getGammaD() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	getGammaP() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	getGbar() (ChanBase method)

      
        	(MarkovChannel method)


      


      	getGeometricalDistanceFromSoma() (Neuron method)


      	getGeometryPolicy() (NeuroMesh method)


      	getGk() (ChanBase method)

      
        	(GapJunction method)


      


      	getHasFired() (IntFireBase method)

      
        	(RandSpike method)


        	(SpikeGen method)


      


      	getHeadDiameter() (Spine method)


      	getHeadLength() (Spine method)


      	getHeadVolume() (Spine method)


      	getHistory() (SeqSynHandler method)


      	getHistoryTime() (SeqSynHandler method)


      	getI1() (OneToAllMsg method)

      
        	(SingleMsg method)


      


      	getI2() (SingleMsg method)


      	getICa() (NMDAChan method)


      	getIcon() (Annotator method)


      	getIdValue() (Neutral method)


      	getIk() (ChanBase method)


      	getIm() (CompartmentBase method)

      
        	(IzhikevichNrn method)


      


      	getIndependent() (Function method)


      	getIndex() (Neutral method)


      	getInitialState() (MarkovChannel method)

      
        	(MarkovSolverBase method)


      


      	getInitString() (PyRun method)


      	getInitU() (IzhikevichNrn method)


      	getInitVm() (CompartmentBase method)

      
        	(IzhikevichNrn method)


      


      	getInject() (CompartmentBase method)

      
        	(IzhikevichNrn method)


      


      	getInnerArea() (DifShell method)


      	getInputOffset() (Adaptor method)


      	getInputVar() (PyRun method)


      	getInstant() (HHChannel2D method)

      
        	(HHChannelBase method)


      


      	getIntCa() (NMDAChan method)


      	getIntCaOffset() (NMDAChan method)


      	getIntCaScale() (NMDAChan method)


      	getIntegral() (PIDController method)


      	getInternalDt() (MarkovGslSolver method)


      	getInvdx() (MarkovSolverBase method)

      
        	(VectorTable method)


      


      	getInvdy() (MarkovSolverBase method)


      	getIsA() (Neutral method)


      	getIsInitialized() (MarkovGslSolver method)

      
        	(SteadyState method)


      


      	getIsOpen() (HDF5WriterBase method)


      	getIsRunning() (Clock method)


      	getIsToroid() (CubeMesh method)


      	getK1() (CplxEnzBase method)


      	getK2() (CplxEnzBase method)


      	getK3() (CplxEnzBase method)


      	getKb() (ReacBase method)


      	getKcat() (EnzBase method)


      	getKernel() (SeqSynHandler method)


      	getKernelEquation() (SeqSynHandler method)


      	getKernelWidth() (SeqSynHandler method)


      	getKf() (ReacBase method)


      	getKm() (EnzBase method)


      	getKMg_A() (MgBlock method)

      
        	(NMDAChan method)


      


      	getKMg_B() (MgBlock method)

      
        	(NMDAChan method)


      


      	getKsolve() (Stoich method)


      	getLabels() (MarkovChannel method)


      	getLastEventTime() (IntFireBase method)


      	getLeak() (DifShell method)


      	getLength() (CaConcBase method)

      
        	(CompartmentBase method)


        	(DifShell method)


      


      	getLevel() (PulseGen method), [1]


      	getLigandConc() (MarkovChannel method)

      
        	(MarkovRateTable method)


      


      	getLongAttr() (HDF5WriterBase method)


      	getLongVecAttr() (HDF5WriterBase method)


      	getLookupindex() (VectorTable method)


      	getLookupvalue() (VectorTable method)


      	getLoopTime() (StimulusTable method)


      	getMatrixEntry() (Stoich method)


      	getMax() (HHGate method)

      
        	(UniformRng method)


      


      	getMaxIter() (SteadyState method)


      	getMe() (Neutral method)


      	getMean() (ExponentialRng method)

      
        	(NormalRng method)


        	(PoissonRng method)


        	(RandGenerator method)


        	(Stats method)


      


      	getMeshToSpace() (CubeMesh method)


      	getMeshType() (MeshEntry method)


      	getMethod() (ExponentialRng method)

      
        	(Ksolve method)


        	(MarkovGslSolver method)


        	(NormalRng method)


        	(TimeTable method)


      


      	getMin() (HHGate method)

      
        	(UniformRng method)


      


      	getMInfinity() (HHGate method)


      	getMode() (Func method)

      
        	(Function method)


        	(HDF5WriterBase method)


        	(PyRun method)


        	(VClamp method)


      


      	getModeltype() (Annotator method)


      	getModulation() (ChanBase method)


      	getMolWt() (Species method)


      	getMotorConst() (PoolBase method)


      	getMsgDestFunctions() (Neutral method)


      	getMsgDests() (Neutral method)


      	getMsgIn() (Neutral method)


      	getMsgOut() (Neutral method)


      	getMyNode() (PostMaster method)


      	getN() (BinomialRng method)

      
        	(PoolBase method)


      


      	getName() (Neutral method)

      
        	(Table method)


        	(Table2 method)


      


      	getNeighbors() (MeshEntry method)

      
        	(Neutral method)


      


      	getNeuronVoxel() (PsdMesh method)

      
        	(SpineMesh method)


      


      	getNInit() (PoolBase method)


      	getNIter() (SteadyState method)


      	getNNegEigenvalues() (SteadyState method)


      	getNoiseSD() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	getNoisy() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	getNormalizeWeights() (SynChan method)


      	getNotes() (Annotator method)


      	getNPosEigenvalues() (SteadyState method)


      	getNsteps() (Clock method)


      	getNum() (Stats method)


      	getNumAllPools() (Stoich method)


      	getNumAllVoxels() (Dsolve method)

      
        	(Gsolve method)


        	(Ksolve method)


      


      	getNumBranches() (Neuron method)


      	getNumBufPools() (Stoich method)


      	getNumColumns() (SparseMsg method)


      	getNumCompartments() (Neuron method)


      	getNumData() (Neutral method)


      	getNumDiffCompts() (CylMesh method)

      
        	(NeuroMesh method)


      


      	getNumDimensions() (ChemCompt method)


      	getNumEntries() (SparseMsg method)


      	getNumEventInput() (NSDFWriter method)


      	getNumField() (Neutral method)


      	getNumFire() (Gsolve method)


      	getNumGateX() (HHChannel2D method)

      
        	(HHChannelBase method)


      


  

  	
      	getNumGateY() (HHChannel2D method)

      
        	(HHChannelBase method)


      


      	getNumGateZ() (HHChannel2D method)

      
        	(HHChannelBase method)


      


      	getNumKb() (ReacBase method)


      	getNumKf() (ReacBase method)


      	getNumKm() (EnzBase method)


      	getNumLocalVoxels() (Gsolve method)

      
        	(Ksolve method)


      


      	getNumMesh() (ChemCompt method)


      	getNumNodes() (PostMaster method)


      	getNumOpenStates() (MarkovChannel method)


      	getNumPools() (Dsolve method)

      
        	(Gsolve method)


        	(Ksolve method)


      


      	getNumProducts() (ReacBase method)


      	getNumProxyPools() (Stoich method)


      	getNumRates() (Stoich method)


      	getNumRows() (SparseMsg method)


      	getNumSegments() (NeuroMesh method)


      	getNumSpine() (Neuron method)


      	getNumSpines() (Neuron method)


      	getNumStates() (MarkovChannel method)


      	getNumSubstrates() (EnzBase method)

      
        	(ReacBase method)


      


      	getNumSynapse() (GraupnerBrunel2012CaPlasticitySynHandler method)

      
        	(STDPSynHandler method)


        	(SeqSynHandler method)


        	(SimpleSynHandler method), [1]


      


      	getNumSynapses() (SynHandlerBase method)


      	getNumTables() (Streamer method)


      	getNumTicks() (Clock method)


      	getNumVarPools() (SteadyState method)

      
        	(Stoich method)


      


      	getNumVars() (Function method)


      	getNumVoxels() (Dsolve method)


      	getNumX() (Function method)


      	getNVec() (Dsolve method)

      
        	(Gsolve method)


        	(Ksolve method)


      


      	getNx() (CubeMesh method)


      	getNy() (CubeMesh method)


      	getNz() (CubeMesh method)


      	getOneVoxelVolume() (ChemCompt method)


      	getOuterArea() (DifShell method)


      	getOutfile() (Streamer method)

      
        	(Table method)


        	(Table2 method)


      


      	getOutputOffset() (Adaptor method)


      	getOutputValue() (Adaptor method)

      
        	(Arith method)


        	(DiffAmp method)


        	(PIDController method)


        	(PulseGen method), [1]


        	(TableBase method)


      


      	getOutputVar() (PyRun method)


      	getP() (BinomialRng method)


      	getParent() (Neutral method)


      	getParentCompartmentOfSpine() (Neuron method)


      	getParentVoxel() (NeuroMesh method)

      
        	(SpineMesh method)


      


      	getPassiveDistribution() (Neuron method)


      	getPath() (Dsolve method)

      
        	(Neutral method)


        	(Stoich method)


      


      	getPathDistanceFromSoma() (Neuron method)


      	getPermeability() (NMDAChan method)


      	getPhi() (Neuron method)


      	getPoolIdMap() (Stoich method)


      	getPreserveNumEntries() (CubeMesh method)


      	getProbability() (SparseMsg method)


      	getProxyPools() (Stoich method)


      	getPsdArea() (Spine method)


      	getQ() (MarkovRateTable method)

      
        	(MarkovSolverBase method)


      


      	getR0() (CylMesh method)


      	getR1() (CylMesh method)


      	getRa() (CompartmentBase method)


      	getRA() (Neuron method)


      	getRank() (SteadyState method)


      	getRate() (Function method)

      
        	(RandSpike method)


      


      	getRatio() (CplxEnzBase method)


      	getRefractoryPeriod() (IntFire method)

      
        	(IntFireBase method)


      


      	getRefractT() (RandSpike method)

      
        	(SpikeGen method)


      


      	getRelativeAccuracy() (MarkovGslSolver method)


      	getResponseScale() (SeqSynHandler method)


      	getRm() (CompartmentBase method)


      	getRM() (Neuron method)


      	getRmByTau() (IzhikevichNrn method)


      	getRowStart() (Stoich method)


      	getRunString() (PyRun method)


      	getRuntime() (Annotator method)


      	getRunTime() (Clock method)


      	getSample() (RandGenerator method)


      	getSaturation() (DiffAmp method)

      
        	(PIDController method)


      


      	getScale() (Adaptor method)

      
        	(Nernst method)


      


      	getSdev() (Stats method)


      	getSecondDelay() (PulseGen method), [1]


      	getSecondLevel() (PulseGen method), [1]


      	getSecondWidth() (PulseGen method), [1]


      	getSeed() (HSolve method)

      
        	(SparseMsg method)


      


      	getSensed() (PIDController method)

      
        	(VClamp method)


      


      	getSeparateSpines() (NeuroMesh method)


      	getSeqActivation() (SeqSynHandler method)


      	getSeqDt() (SeqSynHandler method)


      	getShaftDiameter() (Spine method)


      	getShaftLength() (Spine method)


      	getShapeMode() (DifShell method)


      	getSize() (MarkovRateTable method)

      
        	(TableBase method)


      


      	getSolutionStatus() (SteadyState method)


      	getSolver() (Annotator method)


      	getSourceFields() (Neutral method)


      	getSourceFile() (Neuron method)


      	getSpaceToMesh() (CubeMesh method)


      	getSpeciesId() (PoolBase method)


      	getSpineDistribution() (Neuron method)


      	getSpinesFromExpression() (Neuron method)


      	getSpinesOnCompartment() (Neuron method)


      	getSpineVoxelOnDendVoxel() (NeuroMesh method)


      	getSpineVoxelsOnCompartment() (NeuroMesh method)


      	getSrc() (Finfo method)


      	getSrcFieldsOnE1() (Msg method)


      	getSrcFieldsOnE2() (Msg method)


      	getStartTime() (StimulusTable method)


      	getStartVoxelInCompt() (NeuroMesh method)

      
        	(PsdMesh method)


        	(SpineMesh method)


      


      	getState() (MarkovChannel method)

      
        	(MarkovSolverBase method)


        	(TimeTable method)


      


      	getStateType() (SteadyState method)


      	getStatus() (SteadyState method)

      
        	(Stoich method)


      


      	getStencilIndex() (ChemCompt method)


      	getStencilRate() (ChemCompt method)


      	getStepPosition() (StimulusTable method)


      	getStepSize() (StimulusTable method)


      	getStoich() (Dsolve method)

      
        	(Gsolve method)


        	(Ksolve method)


        	(SteadyState method)


      


      	getStopTime() (StimulusTable method)


      	getStride() (Clock method)

      
        	(DiagonalMsg method)


      


      	getStringAttr() (HDF5WriterBase method)


      	getStringVecAttr() (HDF5WriterBase method)


      	getSubTree() (NeuroMesh method)


      	getSubTreePath() (NeuroMesh method)


      	getSum() (Stats method)


      	getSurface() (CubeMesh method)


      	getTable() (Interpol2D method)

      
        	(VectorTable method)


      


      	getTableA() (HHGate method)

      
        	(HHGate2D method)


      


      	getTableB() (HHGate method)

      
        	(HHGate2D method)


      


      	getTableVector2D() (Interpol2D method)


      	getTarget() (HSolve method)


      	getTau() (CaConcBase method)

      
        	(HHGate method)


        	(IntFire method)


        	(VClamp method)


      


      	getTau1() (SynChan method)


      	getTau2() (SynChan method)


      	getTauCa() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	getTauD() (PIDController method)


      	getTauI() (PIDController method)


      	getTauMinus() (STDPSynHandler method)


      	getTauPlus() (STDPSynHandler method)


      	getTauSyn() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	getTauThresh() (AdThreshIF method)


      	getTauW() (AdExIF method)


      	getTd() (VClamp method)


      	getTemperature() (Nernst method)

      
        	(NMDAChan method)


      


      	getTextColor() (Annotator method)


      	getTheta() (GammaRng method), [1]

      
        	(Neuron method)


      


      	getThetaD() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	getThetaP() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	getThick() (CaConcBase method)


      	getThickness() (DifShell method)

      
        	(PsdMesh method)


      


      	getThis() (Mstring method)

      
        	(Neutral method)


      


      	getThresh() (IntFire method)

      
        	(IntFireBase method)


      


      	getThreshAdaptive() (AdThreshIF method)


      	getThreshJump() (AdThreshIF method)


      	getThreshold() (SpikeGen method)

      
        	(SpikeStats method), [1]


        	(Table method)


        	(Table2 method)


      


      	getTi() (VClamp method)


      	getTick() (Neutral method)


      	getTickDt() (Clock method)


      	getTickStep() (Clock method)


      	getTotal() (SteadyState method)


      	getTotalLength() (Spine method)


      	getTotLength() (CylMesh method)


      	getTrigMode() (PulseGen method), [1]


      	getType() (Finfo method)


      	getU() (IzhIF method)

      
        	(IzhikevichNrn method)


      


      	getU0() (IzhikevichNrn method)


      	getUInit() (IzhIF method)


      	getUseClockedUpdate() (Gsolve method)


      	getUseConcentration() (HHChannelBase method)


      	getUseInterpolation() (HHGate method)


      	getUseRandInit() (Gsolve method)


      	getUseStreamer() (Table method)

      
        	(Table2 method)


      


      	getValence() (DifShell method)

      
        	(Nernst method)


      


      	getValue() (Func method)

      
        	(Function method)


        	(Mstring method)


        	(Variable method)


      


      	getValueFields() (Neutral method)


      	getValuesFromExpression() (Neuron method)


      	getVar() (Func method)


      	getVariance() (NormalRng method)

      
        	(RandGenerator method)


      


      	getVars() (Func method)


      	getVCritical() (QIF method)


      	getVDiv() (HSolve method)


      	getVector() (TableBase method)


      	getVm() (CompartmentBase method)

      
        	(IntFire method)


        	(IzhikevichNrn method)


        	(MarkovChannel method)


        	(MarkovRateTable method)


      


      	getVMax() (HSolve method)


      	getVmax() (IzhikevichNrn method)


      	getVMin() (HSolve method)


      	getVolume() (ChemCompt method)

      
        	(DifShell method)


        	(MeshEntry method), [1]


        	(PoolBase method)


      


      	getVoxelMidpoint() (ChemCompt method)


      	getVoxelVolume() (ChemCompt method)


      	getVPeak() (ExIF method)

      
        	(IzhIF method)


      


      	getVReset() (IntFireBase method)


      	getW() (AdExIF method)


      	getWeight() (Synapse method)


      	getWeightMax() (GraupnerBrunel2012CaPlasticitySynHandler method)

      
        	(STDPSynHandler method)


      


      	getWeightMin() (GraupnerBrunel2012CaPlasticitySynHandler method)

      
        	(STDPSynHandler method)


      


      	getWeightScale() (GraupnerBrunel2012CaPlasticitySynHandler method)

      
        	(SeqSynHandler method)


      


      	getWeightScaleVec() (SeqSynHandler method)


      	getWidth() (PulseGen method), [1]


      	getWindowLength() (Stats method)


      	getWmean() (Stats method)


      	getWnum() (Stats method)


      	getWsdev() (Stats method)


      	getWsum() (Stats method)


      	getX() (Annotator method)

      
        	(CompartmentBase method)


        	(Func method)


        	(HHChannel2D method)


        	(HHChannelBase method)


      


      	getX0() (CompartmentBase method)

      
        	(CubeMesh method)


        	(CylMesh method)


      


      	getX1() (CubeMesh method)

      
        	(CylMesh method)


      


      	getXdivs() (Interpol2D method)

      
        	(MarkovSolverBase method)


        	(VectorTable method)


      


      	getXdivsA() (HHGate2D method)


      	getXdivsB() (HHGate2D method)


      	getXindex() (HHChannel2D method)


      	getXmax() (Interpol method)

      
        	(Interpol2D method)


        	(MarkovSolverBase method)


        	(VectorTable method)


      


      	getXmaxA() (HHGate2D method)


      	getXmaxB() (HHGate2D method)


      	getXmin() (Interpol method)

      
        	(Interpol2D method)


        	(MarkovSolverBase method)


        	(VectorTable method)


      


      	getXminA() (HHGate2D method)


      	getXminB() (HHGate2D method)


      	getXpower() (HHChannel2D method)

      
        	(HHChannelBase method)


      


      	getY() (Annotator method)

      
        	(CompartmentBase method)


        	(Func method)


        	(HHChannel2D method)


        	(HHChannelBase method)


        	(Interpol method)


        	(TableBase method)


      


      	getY0() (CompartmentBase method)

      
        	(CubeMesh method)


        	(CylMesh method)


      


      	getY1() (CubeMesh method)

      
        	(CylMesh method)


      


      	getYdivs() (Interpol2D method)

      
        	(MarkovSolverBase method)


      


      	getYdivsA() (HHGate2D method)


      	getYdivsB() (HHGate2D method)


      	getYindex() (HHChannel2D method)


      	getYmax() (Interpol2D method)

      
        	(MarkovSolverBase method)


      


      	getYmaxA() (HHGate2D method)


      	getYmaxB() (HHGate2D method)


      	getYmin() (Interpol2D method)

      
        	(MarkovSolverBase method)


      


      	getYminA() (HHGate2D method)


      	getYminB() (HHGate2D method)


      	getYpower() (HHChannel2D method)

      
        	(HHChannelBase method)


      


      	getZ() (Annotator method)

      
        	(CompartmentBase method)


        	(Func method)


        	(HHChannel2D method)


        	(HHChannelBase method)


        	(Interpol2D method)


      


      	getZ0() (CompartmentBase method)

      
        	(CubeMesh method)


        	(CylMesh method)


      


      	getZ1() (CubeMesh method)

      
        	(CylMesh method)


      


      	getZindex() (HHChannel2D method)


      	getZk() (MgBlock method)


      	getZpower() (HHChannel2D method)

      
        	(HHChannelBase method)


      


      	ghk (ChanBase attribute)


      	Gk (ChanBase attribute)

      
        	(GapJunction attribute)


      


      	GraupnerBrunel2012CaPlasticitySynHandler (built-in class)


      	Group (built-in class)


      	group (Group attribute)


      	Gsolve (built-in class)


  





H


  	
      	handleAxial() (CompartmentBase method)


      	handleChannel() (CompartmentBase method)

      
        	(IzhikevichNrn method)


      


      	handleLigandConc() (MarkovChannel method)

      
        	(MarkovRateTable method)


      


      	handleMolWt() (PoolBase method)


      	handleMolWtRequest() (Species method)


      	handleQ() (MarkovGslSolver method)


      	handleRaxial() (CompartmentBase method)


      	handleState() (MarkovChannel method)


      	handleVm() (MarkovRateTable method)

      
        	(MarkovSolverBase method)


      


      	hasFired (IntFireBase attribute)

      
        	(RandSpike attribute)


        	(SpikeGen attribute)


      


  

  	
      	HDF5DataWriter (built-in class)


      	HDF5WriterBase (built-in class)


      	headDiameter (Spine attribute)


      	headLength (Spine attribute)


      	headVolume (Spine attribute)


      	HHChannel (built-in class)


      	HHChannel2D (built-in class)


      	HHChannelBase (built-in class)


      	HHGate (built-in class)


      	HHGate2D (built-in class)


      	hillPump() (DifShell method)


      	history (SeqSynHandler attribute)


      	historyTime (SeqSynHandler attribute)


      	HSolve (built-in class)


  





I


  	
      	i1 (OneToAllMsg attribute)

      
        	(SingleMsg attribute)


      


      	i2 (SingleMsg attribute)


      	ICa (NMDAChan attribute)


      	ICaOut (NMDAChan attribute)


      	icon (Annotator attribute)


      	idValue (Neutral attribute)


      	Ik (ChanBase attribute)


      	IkOut (ChanBase attribute)


      	Im (CompartmentBase attribute)

      
        	(IzhikevichNrn attribute)


      


      	increase() (CaConcBase method)


      	increment() (Pool method)


      	independent (Function attribute)


      	index (Neutral attribute)


      	influx() (DifShell method)


      	init (CompartmentBase attribute)

      
        	(Gsolve attribute)


        	(Ksolve attribute)


      


      	init() (MarkovGslSolver method)

      
        	(MarkovRateTable method)


        	(MarkovSolverBase method)


      


      	initialState (MarkovChannel attribute)

      
        	(MarkovSolverBase attribute)


      


      	initProc() (CompartmentBase method)

      
        	(Gsolve method)


        	(Ksolve method)


      


      	initReinit() (CompartmentBase method)

      
        	(Gsolve method)


        	(Ksolve method)


      


      	initString (PyRun attribute)


      	initU (IzhikevichNrn attribute)


      	initVm (CompartmentBase attribute)

      
        	(IzhikevichNrn attribute)


      


      	inject (CompartmentBase attribute)

      
        	(IzhikevichNrn attribute)


      


      	injectMsg() (CompartmentBase method), [1]

      
        	(IzhikevichNrn method)


      


  

  	
      	innerArea (DifShell attribute)


      	innerDif (DifShell attribute)


      	innerDifSourceOut (DifShell attribute)


      	input() (Adaptor method)

      
        	(InputVariable method)


        	(Interpol method)


        	(PulseGen method), [1]


        	(Stats method)


        	(Table method)


        	(Table2 method)


        	(Variable method)


      


      	inputOffset (Adaptor attribute)


      	inputVar (PyRun attribute)


      	InputVariable (built-in class)


      	instant (HHChannel2D attribute)

      
        	(HHChannelBase attribute)


      


      	instratesOut (MarkovRateTable attribute)


      	intCa (NMDAChan attribute)


      	intCaOffset (NMDAChan attribute)


      	intCaScale (NMDAChan attribute)


      	integral (PIDController attribute)


      	internalDt (MarkovGslSolver attribute)


      	Interpol (built-in class)


      	Interpol2D (built-in class)


      	IntFire (built-in class)


      	IntFireBase (built-in class)


      	invdx (MarkovSolverBase attribute)

      
        	(VectorTable attribute)


      


      	invdy (MarkovSolverBase attribute)


      	isA (Neutral attribute)


      	isInitialized (MarkovGslSolver attribute)

      
        	(SteadyState attribute)


      


      	isOpen (HDF5WriterBase attribute)


      	isRunning (Clock attribute)


      	isToroid (CubeMesh attribute)


      	IzhIF (built-in class)


      	IzhikevichNrn (built-in class)


  





K


  	
      	k1 (CplxEnzBase attribute)


      	k2 (CplxEnzBase attribute)


      	k3 (CplxEnzBase attribute)


      	Kb (ReacBase attribute)


      	kcat (EnzBase attribute)


      	kernel (SeqSynHandler attribute)


      	kernelEquation (SeqSynHandler attribute)


      	kernelWidth (SeqSynHandler attribute)


  

  	
      	Kf (ReacBase attribute)


      	Km (EnzBase attribute)


      	KMg_A (MgBlock attribute)

      
        	(NMDAChan attribute)


      


      	KMg_B (MgBlock attribute)

      
        	(NMDAChan attribute)


      


      	Ksolve (built-in class)


      	ksolve (Stoich attribute)


  





L


  	
      	labels (MarkovChannel attribute)


      	lastEventTime (IntFireBase attribute)


      	leak (DifShell attribute)


      	Leakage (built-in class)


      	length (CaConcBase attribute)

      
        	(CompartmentBase attribute)


        	(DifShell attribute)


      


      	level (PulseGen attribute), [1]


      	levelIn() (PulseGen method), [1]


      	LIF (built-in class)


      	ligandConc (MarkovChannel attribute)

      
        	(MarkovRateTable attribute)


      


      	ligandConc() (MarkovSolverBase method)


  

  	
      	linearTransform() (TableBase method)


      	loadCSV() (TableBase method)


      	loadXplot() (TableBase method)


      	loadXplotRange() (TableBase method)


      	longAttr (HDF5WriterBase attribute)


      	longVecAttr (HDF5WriterBase attribute)


      	lookup() (Interpol2D method)


      	lookupindex (VectorTable attribute)


      	lookupOut (Interpol attribute)

      
        	(Interpol2D attribute)


      


      	lookupReturn2D (Interpol2D attribute)


      	lookupvalue (VectorTable attribute)


      	loopTime (StimulusTable attribute)


  





M


  	
      	MarkovChannel (built-in class)


      	MarkovGslSolver (built-in class)


      	MarkovRateTable (built-in class)


      	MarkovSolver (built-in class)


      	MarkovSolverBase (built-in class)


      	matrixEntry (Stoich attribute)


      	max (HHGate attribute)

      
        	(UniformRng attribute)


      


      	maxIter (SteadyState attribute)


      	me (Neutral attribute)


      	mean (ExponentialRng attribute)

      
        	(NormalRng attribute)


        	(PoissonRng attribute)


        	(RandGenerator attribute)


        	(Stats attribute)


      


      	mesh (MeshEntry attribute)


      	MeshEntry (built-in class)


      	meshToSpace (CubeMesh attribute)


      	meshType (MeshEntry attribute)


      	method (ExponentialRng attribute)

      
        	(Ksolve attribute)


        	(MarkovGslSolver attribute)


        	(NormalRng attribute)


        	(TimeTable attribute)


      


  

  	
      	MgBlock (built-in class)


      	min (HHGate attribute)

      
        	(UniformRng attribute)


      


      	mInfinity (HHGate attribute)


      	minusIn() (DiffAmp method)


      	mmPump() (DifShell method)


      	mode (Func attribute)

      
        	(Function attribute)


        	(HDF5WriterBase attribute)


        	(PyRun attribute)


        	(VClamp attribute)


      


      	modeltype (Annotator attribute)


      	modulation (ChanBase attribute)


      	molWt (Species attribute)


      	molWtOut (Species attribute)


      	motorConst (PoolBase attribute)


      	move() (Shell method)


      	Msg (built-in class)


      	msgDestFunctions (Neutral attribute)


      	msgDests (Neutral attribute)


      	msgIn (Neutral attribute)


      	msgOut (Neutral attribute)


      	Mstring (built-in class)


      	myNode (PostMaster attribute)


  





N


  	
      	n (BinomialRng attribute)

      
        	(PoolBase attribute)


      


      	name (Neutral attribute)

      
        	(Table attribute)


        	(Table2 attribute)


      


      	neighbors (MeshEntry attribute)

      
        	(Neutral attribute)


      


      	Nernst (built-in class)


      	NeuroMesh (built-in class)


      	Neuron (built-in class)


      	neuronVoxel (PsdMesh attribute)

      
        	(SpineMesh attribute)


      


      	Neutral (built-in class)


      	nIn() (Pool method)


      	nInit (PoolBase attribute)


      	nIter (SteadyState attribute)


      	NMDAChan (built-in class)


      	nNegEigenvalues (SteadyState attribute)


      	noiseSD (GraupnerBrunel2012CaPlasticitySynHandler attribute)


      	noisy (GraupnerBrunel2012CaPlasticitySynHandler attribute)


      	normalizeWeights (SynChan attribute)


      	NormalRng (built-in class)


      	notes (Annotator attribute)


      	nOut (PoolBase attribute)


      	nPosEigenvalues (SteadyState attribute)


      	NSDFWriter (built-in class)


      	nsteps (Clock attribute)


      	num (Stats attribute)


      	numAllPools (Stoich attribute)


      	numAllVoxels (Dsolve attribute)

      
        	(Gsolve attribute)


        	(Ksolve attribute)


      


      	numBranches (Neuron attribute)


      	numBufPools (Stoich attribute)


      	numColumns (SparseMsg attribute)


      	numCompartments (Neuron attribute)


      	numData (Neutral attribute)


  

  	
      	numDiffCompts (CylMesh attribute)

      
        	(NeuroMesh attribute)


      


      	numDimensions (ChemCompt attribute)


      	numEntries (SparseMsg attribute)


      	numField (Neutral attribute)


      	numFire (Gsolve attribute)


      	numKb (ReacBase attribute)


      	numKf (ReacBase attribute)


      	numKm (EnzBase attribute)


      	numLocalVoxels (Gsolve attribute)

      
        	(Ksolve attribute)


      


      	numNodes (PostMaster attribute)


      	numOpenStates (MarkovChannel attribute)


      	numPools (Dsolve attribute)

      
        	(Gsolve attribute)


        	(Ksolve attribute)


      


      	numProducts (ReacBase attribute)


      	numProxyPools (Stoich attribute)


      	numRates (Stoich attribute)


      	numRows (SparseMsg attribute)


      	numSegments (NeuroMesh attribute)


      	numSpines (Neuron attribute)


      	numStates (MarkovChannel attribute)


      	numSubstrates (EnzBase attribute)

      
        	(ReacBase attribute)


      


      	numSynapses (SynHandlerBase attribute)


      	numTables (Streamer attribute)


      	numTicks (Clock attribute)


      	numVarPools (SteadyState attribute)

      
        	(Stoich attribute)


      


      	numVars (Function attribute)


      	numVoxels (Dsolve attribute)


      	nVec (Dsolve attribute)

      
        	(Gsolve attribute)


        	(Ksolve attribute)


      


      	nx (CubeMesh attribute)


      	ny (CubeMesh attribute)


      	nz (CubeMesh attribute)


  





O


  	
      	OneToAllMsg (built-in class)


      	oneVoxelVolume (ChemCompt attribute)


      	origChannel() (MgBlock method)


      	outerArea (DifShell attribute)


      	outerDif (DifShell attribute)


      	outerDifSourceOut (DifShell attribute)


      	outfile (Streamer attribute)

      
        	(Table attribute)


        	(Table2 attribute)


      


      	outflux() (DifShell method)


      	output (Adaptor attribute)

      
        	(Arith attribute)


        	(DiffAmp attribute)


        	(PIDController attribute)


        	(PulseGen attribute), [1]


        	(PyRun attribute)


        	(RandGenerator attribute)


        	(StimulusTable attribute)


      


  

  	
      	outputOffset (Adaptor attribute)


      	outputValue (Adaptor attribute)

      
        	(Arith attribute)


        	(DiffAmp attribute)


        	(PIDController attribute)


        	(PulseGen attribute), [1]


        	(TableBase attribute)


      


      	outputVar (PyRun attribute)


  





P


  	
      	p (BinomialRng attribute)


      	pairFill() (SparseMsg method)


      	parent (Neutral attribute)


      	parentCompartmentOfSpine (Neuron attribute)


      	parentMsg() (Neutral method)


      	parentVoxel (NeuroMesh attribute)

      
        	(SpineMesh attribute)


      


      	passiveDistribution (Neuron attribute)


      	path (Dsolve attribute)

      
        	(Neutral attribute)


        	(Stoich attribute)


      


      	pathDistanceFromSoma (Neuron attribute)


      	permeability (NMDAChan attribute)


      	permeabilityOut (ChanBase attribute)


      	phi (Neuron attribute)


      	PIDController (built-in class)


      	plainPlot() (TableBase method)


      	plusIn() (DiffAmp method)


      	PoissonRng (built-in class)


      	Pool (built-in class)


      	pool (Species attribute)


      	PoolBase (built-in class)


      	poolIdMap (Stoich attribute)


      	PostMaster (built-in class)


      	prd (EnzBase attribute)

      
        	(ReacBase attribute)


      


      	prdDest() (EnzBase method)

      
        	(ReacBase method)


      


      	prdOut (EnzBase attribute)

      
        	(ReacBase attribute)


      


      	preserveNumEntries (CubeMesh attribute)


      	probability (SparseMsg attribute)


      	proc (Adaptor attribute)

      
        	(Arith attribute)


        	(CaConcBase attribute)


        	(ChanBase attribute)


        	(CompartmentBase attribute)


        	(DiffAmp attribute)


        	(Dsolve attribute)


        	(EnzBase attribute)


        	(Func attribute)


        	(Function attribute)


        	(GapJunction attribute)


        	(Gsolve attribute)


        	(HDF5DataWriter attribute)


        	(HSolve attribute)


        	(IntFire attribute)


        	(Interpol attribute)


        	(IzhikevichNrn attribute)


        	(Ksolve attribute)


        	(MarkovGslSolver attribute)


        	(MarkovRateTable attribute)


        	(MarkovSolver attribute)


        	(MarkovSolverBase attribute)


        	(MeshEntry attribute)


        	(NSDFWriter attribute)


        	(PIDController attribute)


        	(PoolBase attribute)


        	(PostMaster attribute)


        	(PulseGen attribute), [1]


        	(PyRun attribute)


        	(RandGenerator attribute)


        	(RandSpike attribute)


        	(ReacBase attribute)


        	(SpikeGen attribute)


        	(Stats attribute)


        	(StimulusTable attribute)


        	(Streamer attribute)


        	(SynHandlerBase attribute)


        	(Table attribute)


        	(Table2 attribute)


        	(TimeTable attribute)


        	(VClamp attribute)


        	(ZombieFunction attribute)


      


      	proc0 (Clock attribute)


      	proc1 (Clock attribute)


      	proc10 (Clock attribute)


      	proc11 (Clock attribute)


      	proc12 (Clock attribute)


      	proc13 (Clock attribute)


      	proc14 (Clock attribute)


      	proc15 (Clock attribute)


      	proc16 (Clock attribute)


      	proc17 (Clock attribute)


      	proc18 (Clock attribute)


      	proc19 (Clock attribute)


      	proc2 (Clock attribute)


      	proc20 (Clock attribute)


      	proc21 (Clock attribute)


      	proc22 (Clock attribute)


      	proc23 (Clock attribute)


      	proc24 (Clock attribute)


      	proc25 (Clock attribute)


      	proc26 (Clock attribute)


      	proc27 (Clock attribute)


      	proc28 (Clock attribute)


      	proc29 (Clock attribute)


  

  	
      	proc3 (Clock attribute)


      	proc30 (Clock attribute)


      	proc31 (Clock attribute)


      	proc4 (Clock attribute)


      	proc5 (Clock attribute)


      	proc6 (Clock attribute)


      	proc7 (Clock attribute)


      	proc8 (Clock attribute)


      	proc9 (Clock attribute)


      	process() (Adaptor method)

      
        	(Arith method)


        	(CaConcBase method)


        	(ChanBase method)


        	(CompartmentBase method)


        	(DifShell method), [1]


        	(DiffAmp method)


        	(Dsolve method)


        	(EnzBase method)


        	(Func method)


        	(Function method)


        	(GapJunction method)


        	(Gsolve method)


        	(HDF5DataWriter method)


        	(HSolve method)


        	(IntFire method)


        	(Interpol method)


        	(IzhikevichNrn method)


        	(Ksolve method)


        	(MarkovGslSolver method)


        	(MarkovRateTable method)


        	(MarkovSolver method)


        	(MarkovSolverBase method)


        	(MeshEntry method)


        	(NSDFWriter method)


        	(PIDController method)


        	(PoolBase method)


        	(PostMaster method)


        	(PulseGen method), [1]


        	(PyRun method)


        	(RandGenerator method)


        	(RandSpike method)


        	(ReacBase method)


        	(SpikeGen method)


        	(Stats method)


        	(StimulusTable method)


        	(Streamer method)


        	(SynHandlerBase method)


        	(Table method)


        	(Table2 method)


        	(TimeTable method)


        	(VClamp method)


        	(ZombieFunction method)


        	(testSched method)


      


      	process0 (Clock attribute)


      	process1 (Clock attribute)


      	process10 (Clock attribute)


      	process11 (Clock attribute)


      	process12 (Clock attribute)


      	process13 (Clock attribute)


      	process14 (Clock attribute)


      	process15 (Clock attribute)


      	process16 (Clock attribute)


      	process17 (Clock attribute)


      	process18 (Clock attribute)


      	process19 (Clock attribute)


      	process2 (Clock attribute)


      	process20 (Clock attribute)


      	process21 (Clock attribute)


      	process22 (Clock attribute)


      	process23 (Clock attribute)


      	process24 (Clock attribute)


      	process25 (Clock attribute)


      	process26 (Clock attribute)


      	process27 (Clock attribute)


      	process28 (Clock attribute)


      	process29 (Clock attribute)


      	process3 (Clock attribute)


      	process30 (Clock attribute)


      	process31 (Clock attribute)


      	process4 (Clock attribute)


      	process5 (Clock attribute)


      	process6 (Clock attribute)


      	process7 (Clock attribute)


      	process8 (Clock attribute)


      	process9 (Clock attribute)


      	process_0 (DifShell attribute)


      	process_1 (DifShell attribute)


      	proximal (SymCompartment attribute)


      	proximalOnly (SymCompartment attribute)


      	proximalOut (SymCompartment attribute), [1]


      	proxyPools (Stoich attribute)


      	psdArea (Spine attribute)


      	psdList() (PsdMesh method)


      	psdListOut (NeuroMesh attribute)


      	PsdMesh (built-in class)


      	PulseGen (built-in class), [1]


      	PyRun (built-in class)


  





Q


  	
      	Q (MarkovRateTable attribute)

      
        	(MarkovSolverBase attribute)


      


  

  	
      	QIF (built-in class)


      	quit() (Shell method)


  





R


  	
      	r0 (CylMesh attribute)


      	r1 (CylMesh attribute)


      	Ra (CompartmentBase attribute)


      	RA (Neuron attribute)


      	RandGenerator (built-in class)


      	randInject() (CompartmentBase method)


      	randomInit() (SteadyState method)


      	RandSpike (built-in class)


      	rank (SteadyState attribute)


      	rate (Function attribute)

      
        	(RandSpike attribute)


      


      	rateOut (Function attribute)


      	ratio (CplxEnzBase attribute)


      	raxial (CompartmentBase attribute)


      	raxialCylinder() (SymCompartment method)


      	raxialOut (CompartmentBase attribute)


      	raxialSphere() (SymCompartment method), [1]


      	raxialSym() (SymCompartment method), [1], [2]


      	reac (PoolBase attribute)


      	ReacBase (built-in class)


      	reacDest() (PoolBase method)


      	reaction() (DifShell method)


      	refractoryPeriod (IntFire attribute)

      
        	(IntFireBase attribute)


      


      	refractT (RandSpike attribute)

      
        	(SpikeGen attribute)


      


      	reinit() (Adaptor method)

      
        	(Arith method)


        	(CaConcBase method)


        	(ChanBase method)


        	(Clock method)


        	(CompartmentBase method)


        	(DifShell method), [1]


        	(DiffAmp method)


        	(Dsolve method)


        	(EnzBase method)


        	(Func method)


        	(Function method)


        	(GapJunction method)


        	(Gsolve method)


        	(HDF5DataWriter method)


        	(HSolve method)


        	(IntFire method)


        	(Interpol method)


        	(IzhikevichNrn method)


        	(Ksolve method)


        	(MarkovGslSolver method)


        	(MarkovRateTable method)


        	(MarkovSolver method)


        	(MarkovSolverBase method)


        	(MeshEntry method)


        	(NSDFWriter method)


        	(PIDController method)


        	(PoolBase method)


        	(PostMaster method)


        	(PulseGen method), [1]


        	(PyRun method)


        	(RandGenerator method)


        	(RandSpike method)


        	(ReacBase method)


        	(SpikeGen method)


        	(Stats method)


        	(StimulusTable method)


        	(Streamer method)


        	(SynHandlerBase method)


        	(Table method)


        	(Table2 method)


        	(TimeTable method)


        	(VClamp method)


        	(ZombieFunction method)


      


  

  	
      	reinit0 (Clock attribute)


      	reinit1 (Clock attribute)


      	reinit10 (Clock attribute)


      	reinit11 (Clock attribute)


      	reinit12 (Clock attribute)


      	reinit13 (Clock attribute)


      	reinit14 (Clock attribute)


      	reinit15 (Clock attribute)


      	reinit16 (Clock attribute)


      	reinit17 (Clock attribute)


      	reinit18 (Clock attribute)


      	reinit19 (Clock attribute)


      	reinit2 (Clock attribute)


      	reinit20 (Clock attribute)


      	reinit21 (Clock attribute)


      	reinit22 (Clock attribute)


      	reinit23 (Clock attribute)


      	reinit24 (Clock attribute)


      	reinit25 (Clock attribute)


      	reinit26 (Clock attribute)


      	reinit27 (Clock attribute)


      	reinit28 (Clock attribute)


      	reinit29 (Clock attribute)


      	reinit3 (Clock attribute)


      	reinit30 (Clock attribute)


      	reinit31 (Clock attribute)


      	reinit4 (Clock attribute)


      	reinit5 (Clock attribute)


      	reinit6 (Clock attribute)


      	reinit7 (Clock attribute)


      	reinit8 (Clock attribute)


      	reinit9 (Clock attribute)


      	relativeAccuracy (MarkovGslSolver attribute)


      	remesh() (EnzBase method)


      	remeshOut (MeshEntry attribute)


      	remeshReacsOut (MeshEntry attribute)


      	removeTable() (Streamer method)


      	removeTables() (Streamer method)


      	requestMolWt (PoolBase attribute)


      	requestOut (Adaptor attribute)

      
        	(Function attribute)


        	(HDF5DataWriter attribute)


        	(Stats attribute)


        	(Table attribute)


        	(Table2 attribute)


      


      	resetStencil() (ChemCompt method)


      	resettle() (SteadyState method)


      	responseScale (SeqSynHandler attribute)


      	Rm (CompartmentBase attribute)


      	RM (Neuron attribute)


      	RmByTau (IzhikevichNrn attribute)


      	rowStart (Stoich attribute)


      	run() (PyRun method)


      	runString (PyRun attribute)


      	runtime (Annotator attribute)


      	runTime (Clock attribute)


  





S


  	
      	sample (RandGenerator attribute)


      	saturation (DiffAmp attribute)

      
        	(PIDController attribute)


      


      	scale (Adaptor attribute)

      
        	(Nernst attribute)


      


      	scaleBufsAndRates() (Stoich method)


      	sdev (Stats attribute)


      	secondDelay (PulseGen attribute), [1]


      	secondLevel (PulseGen attribute), [1]


      	secondWidth (PulseGen attribute), [1]


      	seed (HSolve attribute)

      
        	(SparseMsg attribute)


      


      	sensed (PIDController attribute)

      
        	(VClamp attribute)


      


      	sensedIn() (PIDController method)

      
        	(VClamp method)


      


      	separateSpines (NeuroMesh attribute)


      	seqActivation (SeqSynHandler attribute)


      	seqDt (SeqSynHandler attribute)


      	SeqSynHandler (built-in class)


      	set1d() (MarkovRateTable method)


      	set2d() (MarkovRateTable method)


      	setA() (IzhIF method)

      
        	(IzhikevichNrn method)


      


      	setA0() (AdExIF method)

      
        	(AdThreshIF method)


        	(IzhIF method)


        	(QIF method)


      


      	setAbs_refract() (RandSpike method)

      
        	(SpikeGen method)


      


      	setAbsoluteAccuracy() (MarkovGslSolver method)


      	setAccommodating() (IzhikevichNrn method)


      	setAlpha() (GammaRng method), [1]

      
        	(HHGate method)


        	(IzhikevichNrn method)


      


      	setAlphaParms() (HHGate method)


      	setAlwaysDiffuse() (CubeMesh method)


      	setAMinus() (STDPSynHandler method)


      	setAMinus0() (STDPSynHandler method)


      	setAnyValue() (Arith method)


      	setAPlus() (STDPSynapse method)


      	setAPlus0() (STDPSynHandler method)


      	setB() (CaConcBase method)

      
        	(IzhIF method)


        	(IzhikevichNrn method)


      


      	setB0() (AdExIF method)

      
        	(IzhIF method)


      


      	setBaseDt() (Clock method)


      	setBaseLevel() (PulseGen method), [1]


      	setBeta() (HHGate method)

      
        	(IzhikevichNrn method)


      


      	setBistable() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	setBufferSize() (PostMaster method)


      	setC() (Function method)

      
        	(IzhikevichNrn method)


      


      	setC0() (IzhIF method)


      	setCa() (CaConcBase method)

      
        	(GraupnerBrunel2012CaPlasticitySynHandler method)


      


      	setCa_base() (CaConcBase method)


      	setCaAdvance() (HSolve method)


      	setCaBasal() (CaConcBase method)


      	setCaDiv() (HSolve method)


      	setCaInit() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	setCaMax() (HSolve method)


      	setCaMin() (HSolve method)


      	setCaPost() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	setCaPre() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	setCeiling() (CaConcBase method)


      	setCeq() (DifShell method)


      	setChannelDistribution() (Neuron method)


      	setChunkSize() (HDF5WriterBase method)


      	setCin() (Nernst method)


      	setclock() (Shell method)


      	setCm() (CompartmentBase method)


      	setCM() (Neuron method)


      	setCMg() (MgBlock method)

      
        	(NMDAChan method)


      


      	setColor() (Annotator method)


      	setCommand() (PIDController method)


      	setCompartment() (Dsolve method)

      
        	(Ksolve method)


        	(Stoich method)


      


      	setCompartmentLengthInLambdas() (Neuron method)


      	setCompression() (HDF5WriterBase method)


      	setCompressor() (HDF5WriterBase method)


      	setConc() (PoolBase method)


      	setConcInit() (PoolBase method)


      	setConcK1() (CplxEnzBase method)


      	setCondFraction() (NMDAChan method)


      	setconst() (MarkovRateTable method)


      	setConvergenceCriterion() (SteadyState method)


      	setCoords() (CubeMesh method)

      
        	(CylMesh method)


      


      	setCount() (PulseGen method), [1]


      	setCout() (Nernst method)


      	setD() (DifShell method)

      
        	(IzhIF method)


        	(IzhikevichNrn method)


      


      	setDelay() (PulseGen method), [1]

      
        	(Synapse method)


      


      	setDelayD() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	setDeltaThresh() (ExIF method)


      	setDiameter() (CaConcBase method)

      
        	(CompartmentBase method)


        	(DifShell method)


      


      	setDiffConst() (PoolBase method)


      	setDiffLength() (CylMesh method)

      
        	(NeuroMesh method)


      


      	setDiffScale() (Dsolve method)


      	setDiffVol1() (Dsolve method)


      	setDiffVol2() (Dsolve method)


      	setDirpath() (Annotator method)


      	setDivs() (HHGate method)


      	setDoLoop() (StimulusTable method)


      	setDoubleAttr() (HDF5WriterBase method)


      	setDoubleVecAttr() (HDF5WriterBase method)


      	setDsolve() (Stoich method)


      	setDt() (HSolve method)


      	setDx() (CubeMesh method)

      
        	(Interpol2D method)


      


      	setDy() (CubeMesh method)

      
        	(Interpol2D method)


      


      	setDz() (CubeMesh method)


      	setEdgeTriggered() (SpikeGen method)


      	setEk() (ChanBase method)


      	setEm() (CompartmentBase method)

      
        	(Neuron method)


      


      	setEntry() (SparseMsg method)


      	setEpsAbs() (Ksolve method)


      	setEpsRel() (Ksolve method)


      	setExpr() (Func method)

      
        	(Function method)


      


      	setExtCa() (NMDAChan method)


      	setFilename() (HDF5WriterBase method)

      
        	(TimeTable method)


      


      	setFirstDelay() (PulseGen method), [1]


      	setFirstLevel() (PulseGen method), [1]


      	setFirstWidth() (PulseGen method), [1]


      	setFloor() (CaConcBase method)


      	setFlushLimit() (HDF5DataWriter method)


      	setFormat() (Streamer method)

      
        	(Table method)


        	(Table2 method)


      


      	setFunction() (Arith method)


      	setGain() (DiffAmp method)

      
        	(PIDController method)


        	(VClamp method)


      


      	setGamma() (IzhikevichNrn method)


      	setGammaD() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	setGammaP() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	setGbar() (ChanBase method)

      
        	(MarkovChannel method)


      


      	setGeomAndElec() (CompartmentBase method)


      	setGeometryPolicy() (NeuroMesh method)


      	setGk() (ChanBase method)

      
        	(GapJunction method)


      


      	setHeadDiameter() (Spine method)


      	setHeadLength() (Spine method)


      	setHeadVolume() (Spine method)


      	setHistoryTime() (SeqSynHandler method)


      	setI1() (OneToAllMsg method)

      
        	(SingleMsg method)


      


      	setI2() (SingleMsg method)


      	setIcon() (Annotator method)


      	setIndependent() (Function method)


      	setInitialState() (MarkovChannel method)

      
        	(MarkovSolverBase method)


      


      	setInitString() (PyRun method)


      	setInitU() (IzhikevichNrn method)


      	setInitVm() (CompartmentBase method)

      
        	(IzhikevichNrn method)


      


      	setInject() (CompartmentBase method)

      
        	(IzhikevichNrn method)


      


      	setInnerArea() (DifShell method)


      	setInputOffset() (Adaptor method)


      	setInputVar() (PyRun method)


      	setInstant() (HHChannel2D method)

      
        	(HHChannelBase method)


      


      	setIntCa() (NMDAChan method)


      	setIntCaOffset() (NMDAChan method)


      	setIntCaScale() (NMDAChan method)


      	setInternalDt() (MarkovGslSolver method)


      	setIsToroid() (CubeMesh method)


      	setK1() (CplxEnzBase method)


      	setK2() (CplxEnzBase method)


      	setK3() (CplxEnzBase method)


      	setKb() (ReacBase method)


      	setKcat() (EnzBase method)


      	setKernelEquation() (SeqSynHandler method)


      	setKernelWidth() (SeqSynHandler method)


      	setKf() (ReacBase method)


      	setKm() (EnzBase method)


      	setKMg_A() (MgBlock method)

      
        	(NMDAChan method)


      


      	setKMg_B() (MgBlock method)

      
        	(NMDAChan method)


      


      	setKmK1() (Enz method)


      	setKsolve() (Stoich method)


      	setLabels() (MarkovChannel method)


      	setLeak() (DifShell method)


      	setLength() (CaConcBase method)

      
        	(CompartmentBase method)


        	(DifShell method)


      


      	setLevel() (PulseGen method), [1]


      	setLigandConc() (MarkovChannel method)

      
        	(MarkovRateTable method)


      


      	setLongAttr() (HDF5WriterBase method)


      	setLongVecAttr() (HDF5WriterBase method)


      	setLoopTime() (StimulusTable method)


      	setMax() (HHGate method)

      
        	(UniformRng method)


      


      	setMaxIter() (SteadyState method)


      	setMean() (ExponentialRng method)

      
        	(NormalRng method)


        	(PoissonRng method)


      


      	setMeshToSpace() (CubeMesh method)


      	setMethod() (ExponentialRng method)

      
        	(Ksolve method)


        	(MarkovGslSolver method)


        	(NormalRng method)


        	(TimeTable method)


      


      	setMin() (HHGate method)

      
        	(UniformRng method)


      


      	setMInfinity() (HHGate method)


      	setMode() (Func method)

      
        	(Function method)


        	(HDF5WriterBase method)


        	(PyRun method)


        	(VClamp method)


      


      	setModeltype() (Annotator method)


      	setModulation() (ChanBase method)


      	setMolWt() (Species method)


      	setMotorConst() (PoolBase method)


      	setN() (BinomialRng method)

      
        	(PoolBase method)


      


      	setName() (Neutral method)

      
        	(Table method)


        	(Table2 method)


      


      	setNInit() (PoolBase method)


      	setNoiseSD() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	setNoisy() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	setNormalizeWeights() (SynChan method)


      	setNotes() (Annotator method)


      	setNumAllVoxels() (Gsolve method)

      
        	(Ksolve method)


      


      	setNumData() (Neutral method)


      	setNumEventInput() (NSDFWriter method)


      	setNumField() (Neutral method)


      	setNumGateX() (HHChannel2D method)

      
        	(HHChannelBase method)


      


      	setNumGateY() (HHChannel2D method)

      
        	(HHChannelBase method)


      


      	setNumGateZ() (HHChannel2D method)

      
        	(HHChannelBase method)


      


      	setNumKb() (ReacBase method)


      	setNumKf() (ReacBase method)


      	setNumKm() (EnzBase method)


      	setNumMesh() (ChemCompt method)


      	setNumOpenStates() (MarkovChannel method)


      	setNumPools() (Dsolve method)

      
        	(Gsolve method)


        	(Ksolve method)


      


      	setNumSpine() (Neuron method)


      	setNumStates() (MarkovChannel method)


      	setNumSynapse() (GraupnerBrunel2012CaPlasticitySynHandler method)

      
        	(STDPSynHandler method)


        	(SeqSynHandler method)


        	(SimpleSynHandler method), [1]


      


      	setNumSynapses() (SynHandlerBase method)


      	setNumVars() (Function method)


      	setNumX() (Function method)


      	setNVec() (Dsolve method)

      
        	(Gsolve method)


        	(Ksolve method)


      


      	setNx() (CubeMesh method)


      	setNy() (CubeMesh method)


      	setNz() (CubeMesh method)


      	setOneVoxelVolume() (ChemCompt method)


      	setOuterArea() (DifShell method)


      	setOutfile() (Streamer method)

      
        	(Table method)


        	(Table2 method)


      


      	setOutputOffset() (Adaptor method)


      	setOutputValue() (Arith method)


      	setOutputVar() (PyRun method)


      	setP() (BinomialRng method)


      	setPassiveDistribution() (Neuron method)


      	setPath() (Dsolve method)

      
        	(Stoich method)


      


      	setPermeability() (NMDAChan method)


      	setPhi() (Neuron method)


      	setPreserveNumEntries() (CubeMesh method)


      	setProbability() (SparseMsg method)


      	setPsdArea() (Spine method)


      	setR0() (CylMesh method)


      	setR1() (CylMesh method)


      	setRa() (CompartmentBase method)


      	setRA() (Neuron method)


      	setRandomConnectivity() (SparseMsg method)


      	setRate() (RandSpike method)


      	setRatio() (CplxEnzBase method)


      	setRefractoryPeriod() (IntFire method)

      
        	(IntFireBase method)


      


  

  	
      	setRefractT() (RandSpike method)

      
        	(SpikeGen method)


      


      	setRelativeAccuracy() (MarkovGslSolver method)


      	setResponseScale() (SeqSynHandler method)


      	setRm() (CompartmentBase method)


      	setRM() (Neuron method)


      	setRmByTau() (IzhikevichNrn method)


      	setRunString() (PyRun method)


      	setRuntime() (Annotator method)


      	setSaturation() (DiffAmp method)

      
        	(PIDController method)


      


      	setScale() (Adaptor method)

      
        	(Nernst method)


      


      	setSecondDelay() (PulseGen method), [1]


      	setSecondLevel() (PulseGen method), [1]


      	setSecondWidth() (PulseGen method), [1]


      	setSeed() (HSolve method)

      
        	(SparseMsg method)


      


      	setSeparateSpines() (NeuroMesh method)


      	setSeqDt() (SeqSynHandler method)


      	setShaftDiameter() (Spine method)


      	setShaftLength() (Spine method)


      	setShapeMode() (DifShell method)


      	setSolver() (Annotator method)


      	setSourceFile() (Neuron method)


      	setSpaceToMesh() (CubeMesh method)


      	setSpeciesId() (PoolBase method)


      	setSpineAndPsdDsolve() (Neuron method)


      	setSpineAndPsdMesh() (Neuron method)


      	setSpineDistribution() (Neuron method)


      	setStartTime() (StimulusTable method)


      	setStepPosition() (StimulusTable method)


      	setStepSize() (StimulusTable method)


      	setStoich() (Dsolve method)

      
        	(Gsolve method)


        	(SteadyState method)


      


      	setStopTime() (StimulusTable method)


      	setStride() (DiagonalMsg method)


      	setStringAttr() (HDF5WriterBase method)


      	setStringVecAttr() (HDF5WriterBase method)


      	setSubTree() (NeuroMesh method)


      	setSubTreePath() (NeuroMesh method)


      	setSurface() (CubeMesh method)


      	setTable() (Interpol2D method)

      
        	(VectorTable method)


      


      	setTableA() (HHGate method)

      
        	(HHGate2D method)


      


      	setTableB() (HHGate method)

      
        	(HHGate2D method)


      


      	setTableVector2D() (Interpol2D method)


      	setTarget() (HSolve method)


      	setTau() (CaConcBase method)

      
        	(HHGate method)


        	(IntFire method)


        	(VClamp method)


      


      	setTau1() (SynChan method)


      	setTau2() (SynChan method)


      	setTauCa() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	setTauD() (PIDController method)


      	setTauI() (PIDController method)


      	setTauMinus() (STDPSynHandler method)


      	setTauPlus() (STDPSynHandler method)


      	setTauSyn() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	setTauThresh() (AdThreshIF method)


      	setTauW() (AdExIF method)


      	setTd() (VClamp method)


      	setTemperature() (Nernst method)

      
        	(NMDAChan method)


      


      	setTextColor() (Annotator method)


      	setTheta() (GammaRng method), [1]

      
        	(Neuron method)


      


      	setThetaD() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	setThetaP() (GraupnerBrunel2012CaPlasticitySynHandler method)


      	setThick() (CaConcBase method)


      	setThickness() (DifShell method)

      
        	(PsdMesh method)


      


      	setThis() (Mstring method)

      
        	(Neutral method)


      


      	setThresh() (IntFire method)

      
        	(IntFireBase method)


      


      	setThreshAdaptive() (AdThreshIF method)


      	setThreshJump() (AdThreshIF method)


      	setThreshold() (SpikeGen method)

      
        	(SpikeStats method), [1]


        	(Table method)


        	(Table2 method)


      


      	setTi() (VClamp method)


      	setTick() (Neutral method)


      	setTickDt() (Clock method)


      	setTickStep() (Clock method)


      	settle() (SteadyState method)


      	setTotal() (SteadyState method)


      	setTotalLength() (Spine method)


      	setTrigMode() (PulseGen method), [1]


      	setU() (IzhIF method)


      	setU0() (IzhikevichNrn method)


      	setUInit() (IzhIF method)


      	setupAlpha() (HHGate method)


      	setupGate() (HHGate method)


      	setupMatrix() (SteadyState method)


      	setupTau() (HHGate method)


      	setUseClockedUpdate() (Gsolve method)


      	setUseConcentration() (HHChannelBase method)


      	setUseInterpolation() (HHGate method)


      	setUseRandInit() (Gsolve method)


      	setUseStreamer() (Table method)

      
        	(Table2 method)


      


      	setValence() (DifShell method)

      
        	(Nernst method)


      


      	setValue() (Mstring method)

      
        	(Variable method)


      


      	setVar() (Func method)


      	setVariance() (NormalRng method)


      	setVCritical() (QIF method)


      	setVDiv() (HSolve method)


      	setVector() (TableBase method)


      	setVm() (CompartmentBase method)

      
        	(IntFire method)


        	(IzhikevichNrn method)


        	(MarkovChannel method)


        	(MarkovRateTable method)


      


      	setVMax() (HSolve method)


      	setVmax() (IzhikevichNrn method)


      	setVMin() (HSolve method)


      	setVolume() (ChemCompt method)

      
        	(DifShell method)


        	(PoolBase method)


      


      	setVolumeNotRates() (ChemCompt method)


      	setVPeak() (ExIF method)

      
        	(IzhIF method)


      


      	setVReset() (IntFireBase method)


      	setW() (AdExIF method)


      	setWeight() (Synapse method)


      	setWeightMax() (GraupnerBrunel2012CaPlasticitySynHandler method)

      
        	(STDPSynHandler method)


      


      	setWeightMin() (GraupnerBrunel2012CaPlasticitySynHandler method)

      
        	(STDPSynHandler method)


      


      	setWeightScale() (GraupnerBrunel2012CaPlasticitySynHandler method)

      
        	(SeqSynHandler method)


      


      	setWidth() (PulseGen method), [1]


      	setWindowLength() (Stats method)


      	setX() (Annotator method)

      
        	(CompartmentBase method)


        	(Func method)


        	(HHChannel2D method)


        	(HHChannelBase method)


      


      	setX0() (CompartmentBase method)

      
        	(CubeMesh method)


        	(CylMesh method)


      


      	setX1() (CubeMesh method)

      
        	(CylMesh method)


      


      	setXdivs() (Interpol2D method)

      
        	(MarkovSolverBase method)


        	(VectorTable method)


      


      	setXdivsA() (HHGate2D method)


      	setXdivsB() (HHGate2D method)


      	setXindex() (HHChannel2D method)


      	setXmax() (Interpol method)

      
        	(Interpol2D method)


        	(MarkovSolverBase method)


        	(VectorTable method)


      


      	setXmaxA() (HHGate2D method)


      	setXmaxB() (HHGate2D method)


      	setXmin() (Interpol method)

      
        	(Interpol2D method)


        	(MarkovSolverBase method)


        	(VectorTable method)


      


      	setXminA() (HHGate2D method)


      	setXminB() (HHGate2D method)


      	setXpower() (HHChannel2D method)

      
        	(HHChannelBase method)


      


      	setY() (Annotator method)

      
        	(CompartmentBase method)


        	(Func method)


        	(HHChannel2D method)


        	(HHChannelBase method)


      


      	setY0() (CompartmentBase method)

      
        	(CubeMesh method)


        	(CylMesh method)


      


      	setY1() (CubeMesh method)

      
        	(CylMesh method)


      


      	setYdivs() (Interpol2D method)

      
        	(MarkovSolverBase method)


      


      	setYdivsA() (HHGate2D method)


      	setYdivsB() (HHGate2D method)


      	setYindex() (HHChannel2D method)


      	setYmax() (Interpol2D method)

      
        	(MarkovSolverBase method)


      


      	setYmaxA() (HHGate2D method)


      	setYmaxB() (HHGate2D method)


      	setYmin() (Interpol2D method)

      
        	(MarkovSolverBase method)


      


      	setYminA() (HHGate2D method)


      	setYminB() (HHGate2D method)


      	setYpower() (HHChannel2D method)

      
        	(HHChannelBase method)


      


      	setZ() (Annotator method)

      
        	(CompartmentBase method)


        	(Func method)


        	(HHChannel2D method)


        	(HHChannelBase method)


      


      	setZ0() (CompartmentBase method)

      
        	(CubeMesh method)


        	(CylMesh method)


      


      	setZ1() (CubeMesh method)

      
        	(CylMesh method)


      


      	setZindex() (HHChannel2D method)


      	setZk() (MgBlock method)


      	setZpower() (HHChannel2D method)

      
        	(HHChannelBase method)


      


      	shaftDiameter (Spine attribute)


      	shaftLength (Spine attribute)


      	shapeMode (DifShell attribute)


      	Shell (built-in class)


      	showMatrices() (SteadyState method)


      	sibling (SymCompartment attribute)


      	SimpleSynHandler (built-in class), [1]


      	SingleMsg (built-in class)


      	size (MarkovRateTable attribute)

      
        	(TableBase attribute)


      


      	solutionStatus (SteadyState attribute)


      	solver (Annotator attribute)


      	sourceFields (Neutral attribute)


      	sourceFile (Neuron attribute)


      	spaceToMesh (CubeMesh attribute)


      	SparseMsg (built-in class)


      	Species (built-in class)


      	species (PoolBase attribute)


      	speciesId (PoolBase attribute)


      	sphere (SymCompartment attribute)


      	spike() (Table method)

      
        	(Table2 method)


      


      	SpikeGen (built-in class)


      	spikeOut (IntFire attribute)

      
        	(IntFireBase attribute)


        	(IzhikevichNrn attribute)


        	(RandSpike attribute)


        	(SpikeGen attribute)


      


      	SpikeStats (built-in class), [1]


      	Spine (built-in class)


      	spineDistribution (Neuron attribute)


      	spineList() (SpineMesh method)


      	spineListOut (NeuroMesh attribute)


      	SpineMesh (built-in class)


      	spinesFromExpression (Neuron attribute)


      	spinesOnCompartment (Neuron attribute)


      	spineVoxelOnDendVoxel (NeuroMesh attribute)


      	spineVoxelsOnCompartment (NeuroMesh attribute)


      	src (Finfo attribute)


      	srcFieldsOnE1 (Msg attribute)


      	srcFieldsOnE2 (Msg attribute)


      	start() (Clock method)


      	startTime (StimulusTable attribute)


      	startVoxelInCompt (NeuroMesh attribute)

      
        	(PsdMesh attribute)


        	(SpineMesh attribute)


      


      	state (MarkovChannel attribute)

      
        	(MarkovSolverBase attribute)


        	(TimeTable attribute)


      


      	stateOut (MarkovGslSolver attribute)

      
        	(MarkovSolverBase attribute)


      


      	stateType (SteadyState attribute)


      	Stats (built-in class)


      	status (SteadyState attribute)

      
        	(Stoich attribute)


      


      	STDPSynapse (built-in class)


      	STDPSynHandler (built-in class)


      	SteadyState (built-in class)


      	stencilIndex (ChemCompt attribute)


      	stencilRate (ChemCompt attribute)


      	step() (Clock method)


      	stepPosition (StimulusTable attribute)


      	stepSize (StimulusTable attribute)


      	StimulusTable (built-in class)


      	Stoich (built-in class)


      	stoich (Dsolve attribute)

      
        	(Gsolve attribute)


        	(Ksolve attribute)


        	(SteadyState attribute)


      


      	stop() (Clock method)


      	stopTime (StimulusTable attribute)


      	storeInflux() (DifShell method)


      	storeOutflux() (DifShell method)


      	Streamer (built-in class)


      	stride (Clock attribute)

      
        	(DiagonalMsg attribute)


      


      	stringAttr (HDF5WriterBase attribute)


      	stringVecAttr (HDF5WriterBase attribute)


      	sub (EnzBase attribute)

      
        	(ReacBase attribute)


      


      	subDest() (EnzBase method)

      
        	(ReacBase method)


      


      	subOut (EnzBase attribute)

      
        	(ReacBase attribute)


      


      	subTree (NeuroMesh attribute)


      	subTreePath (NeuroMesh attribute)


      	sum (Stats attribute)


      	sumRaxial() (SymCompartment method), [1], [2]


      	sumRaxialOut (SymCompartment attribute), [1], [2]


      	surface (CubeMesh attribute)


      	SymCompartment (built-in class)


      	Synapse (built-in class)


      	SynChan (built-in class)


      	SynHandlerBase (built-in class)


  





T


  	
      	Table (built-in class)


      	table (Interpol2D attribute)

      
        	(VectorTable attribute)


      


      	Table2 (built-in class)


      	tableA (HHGate attribute)

      
        	(HHGate2D attribute)


      


      	tableB (HHGate attribute)

      
        	(HHGate2D attribute)


      


      	TableBase (built-in class)


      	tableVector2D (Interpol2D attribute)


      	target (HSolve attribute)


      	tau (CaConcBase attribute)

      
        	(HHGate attribute)


        	(IntFire attribute)


        	(VClamp attribute)


      


      	tau1 (SynChan attribute)


      	tau2 (SynChan attribute)


      	tauCa (GraupnerBrunel2012CaPlasticitySynHandler attribute)


      	tauD (PIDController attribute)


      	tauI (PIDController attribute)


      	tauMinus (STDPSynHandler attribute)


      	tauPlus (STDPSynHandler attribute)


      	tauPump() (DifShell method)


      	tauSyn (GraupnerBrunel2012CaPlasticitySynHandler attribute)


      	tauThresh (AdThreshIF attribute)


      	tauW (AdExIF attribute)


      	td (VClamp attribute)


      	Temperature (Nernst attribute)


      	temperature (NMDAChan attribute)


      	testSched (built-in class)


      	textColor (Annotator attribute)


  

  	
      	theta (GammaRng attribute), [1]

      
        	(Neuron attribute)


      


      	thetaD (GraupnerBrunel2012CaPlasticitySynHandler attribute)


      	thetaP (GraupnerBrunel2012CaPlasticitySynHandler attribute)


      	thick (CaConcBase attribute)


      	thickness (DifShell attribute)

      
        	(PsdMesh attribute)


      


      	this (Mstring attribute)

      
        	(Neutral attribute)


      


      	thresh (IntFire attribute)

      
        	(IntFireBase attribute)


      


      	threshAdaptive (AdThreshIF attribute)


      	threshJump (AdThreshIF attribute)


      	threshold (SpikeGen attribute)

      
        	(SpikeStats attribute), [1]


        	(Table attribute)


        	(Table2 attribute)


      


      	ti (VClamp attribute)


      	tick (Neutral attribute)


      	tickDt (Clock attribute)


      	tickStep (Clock attribute)


      	TimeTable (built-in class)


      	total (SteadyState attribute)


      	totalLength (Spine attribute)


      	totLength (CylMesh attribute)


      	transpose() (SparseMsg method)


      	trigger() (PyRun method)


      	trigMode (PulseGen attribute), [1]


      	tripletFill() (SparseMsg method)


      	tweakAlpha() (HHGate method)


      	tweakTau() (HHGate method)


      	type (Finfo attribute)


  





U


  	
      	u (IzhIF attribute)

      
        	(IzhikevichNrn attribute)


      


      	u0 (IzhikevichNrn attribute)


      	uInit (IzhIF attribute)


      	UniformRng (built-in class)


      	unsetEntry() (SparseMsg method)


      	unzombify() (Stoich method)


  

  	
      	useClock() (Shell method)


      	useClockedUpdate (Gsolve attribute)


      	useConcentration (HHChannelBase attribute)


      	useInterpolation (HHGate attribute)


      	useRandInit (Gsolve attribute)


      	useStreamer (Table attribute)

      
        	(Table2 attribute)


      


  





V


  	
      	valence (DifShell attribute)

      
        	(Nernst attribute)


      


      	value (Func attribute)

      
        	(Function attribute)


        	(Mstring attribute)


        	(Variable attribute)


      


      	valueFields (Neutral attribute)


      	valueOut (Func attribute)

      
        	(Function attribute)


      


      	valuesFromExpression (Neuron attribute)


      	var (Func attribute)


      	Variable (built-in class)


      	variance (NormalRng attribute)

      
        	(RandGenerator attribute)


      


      	varIn() (Func method)


      	vars (Func attribute)


      	VClamp (built-in class)


      	vCritical (QIF attribute)


      	vDiv (HSolve attribute)


      	vector (TableBase attribute)


      	VectorTable (built-in class)


      	Vm (CompartmentBase attribute)

      
        	(IntFire attribute)


        	(IzhikevichNrn attribute)


        	(MarkovChannel attribute)


        	(MarkovRateTable attribute)


      


  

  	
      	Vm() (ChanBase method), [1]

      
        	(SpikeGen method)


        	(SpikeStats method), [1]


      


      	Vm1() (GapJunction method)


      	Vm2() (GapJunction method)


      	vMax (HSolve attribute)


      	Vmax (IzhikevichNrn attribute)


      	vMin (HSolve attribute)


      	VmOut (CompartmentBase attribute)

      
        	(IzhikevichNrn attribute), [1]


      


      	volume (ChemCompt attribute)

      
        	(DifShell attribute)


        	(MeshEntry attribute)


        	(PoolBase attribute)


      


      	voxelMidpoint (ChemCompt attribute)


      	voxelVol() (Gsolve method)

      
        	(Ksolve method)


      


      	voxelVolOut (ChemCompt attribute)


      	voxelVolume (ChemCompt attribute)


      	vPeak (ExIF attribute)

      
        	(IzhIF attribute)


      


      	vReset (IntFireBase attribute)


  





W


  	
      	w (AdExIF attribute)


      	weight (Synapse attribute)


      	weightMax (GraupnerBrunel2012CaPlasticitySynHandler attribute)

      
        	(STDPSynHandler attribute)


      


      	weightMin (GraupnerBrunel2012CaPlasticitySynHandler attribute)

      
        	(STDPSynHandler attribute)


      


      	weightScale (GraupnerBrunel2012CaPlasticitySynHandler attribute)

      
        	(SeqSynHandler attribute)


      


  

  	
      	weightScaleVec (SeqSynHandler attribute)


      	width (PulseGen attribute), [1]


      	widthIn() (PulseGen method), [1]


      	windowLength (Stats attribute)


      	wmean (Stats attribute)


      	wnum (Stats attribute)


      	wsdev (Stats attribute)


      	wsum (Stats attribute)


  





X


  	
      	x (Annotator attribute)

      
        	(CompartmentBase attribute)


        	(Func attribute)


      


      	X (HHChannel2D attribute)

      
        	(HHChannelBase attribute)


      


      	x0 (CompartmentBase attribute)

      
        	(CubeMesh attribute)


        	(CylMesh attribute)


      


      	x1 (CubeMesh attribute)

      
        	(CylMesh attribute)


      


      	xCompt (Gsolve attribute)

      
        	(Ksolve attribute)


      


      	xComptIn() (Gsolve method)

      
        	(Ksolve method)


      


      	xComptOut (Gsolve attribute)

      
        	(Ksolve attribute)


      


      	xdivs (Interpol2D attribute)

      
        	(MarkovSolverBase attribute)


        	(VectorTable attribute)


      


      	xdivsA (HHGate2D attribute)


  

  	
      	xdivsB (HHGate2D attribute)


      	xIn() (Func method)


      	Xindex (HHChannel2D attribute)


      	xmax (Interpol attribute)

      
        	(Interpol2D attribute)


        	(MarkovSolverBase attribute)


        	(VectorTable attribute)


      


      	xmaxA (HHGate2D attribute)


      	xmaxB (HHGate2D attribute)


      	xmin (Interpol attribute)

      
        	(Interpol2D attribute)


        	(MarkovSolverBase attribute)


        	(VectorTable attribute)


      


      	xminA (HHGate2D attribute)


      	xminB (HHGate2D attribute)


      	xplot() (TableBase method)


      	Xpower (HHChannel2D attribute)

      
        	(HHChannelBase attribute)


      


      	xyIn() (Func method)


      	xyzIn() (Func method)


  





Y


  	
      	y (Annotator attribute)

      
        	(CompartmentBase attribute)


        	(Func attribute)


      


      	Y (HHChannel2D attribute)

      
        	(HHChannelBase attribute)


      


      	y (Interpol attribute)

      
        	(TableBase attribute)


      


      	y0 (CompartmentBase attribute)

      
        	(CubeMesh attribute)


        	(CylMesh attribute)


      


      	y1 (CubeMesh attribute)

      
        	(CylMesh attribute)


      


      	ydivs (Interpol2D attribute)

      
        	(MarkovSolverBase attribute)


      


  

  	
      	ydivsA (HHGate2D attribute)


      	ydivsB (HHGate2D attribute)


      	yIn() (Func method)


      	Yindex (HHChannel2D attribute)


      	ymax (Interpol2D attribute)

      
        	(MarkovSolverBase attribute)


      


      	ymaxA (HHGate2D attribute)


      	ymaxB (HHGate2D attribute)


      	ymin (Interpol2D attribute)

      
        	(MarkovSolverBase attribute)


      


      	yminA (HHGate2D attribute)


      	yminB (HHGate2D attribute)


      	Ypower (HHChannel2D attribute)

      
        	(HHChannelBase attribute)


      


  





Z


  	
      	z (Annotator attribute)

      
        	(CompartmentBase attribute)


        	(Func attribute)


      


      	Z (HHChannel2D attribute)

      
        	(HHChannelBase attribute)


      


      	z (Interpol2D attribute)


      	z0 (CompartmentBase attribute)

      
        	(CubeMesh attribute)


        	(CylMesh attribute)


      


  

  	
      	z1 (CubeMesh attribute)

      
        	(CylMesh attribute)


      


      	zIn() (Func method)


      	Zindex (HHChannel2D attribute)


      	Zk (MgBlock attribute)


      	ZombieCaConc (built-in class)


      	ZombieCompartment (built-in class)


      	ZombieFunction (built-in class)


      	Zpower (HHChannel2D attribute)

      
        	(HHChannelBase attribute)


      


  







          

      

      

    

  

    
      
          
            
  
AdExIF


	
class AdExIF

	Leaky Integrate-and-Fire neuron with Exponential spike rise and adaptation via an adapting current w.Rm*Cm * dVm/dt = -(Vm-Em) + deltaThresh * exp((Vm-thresh)/deltaThresh) + Rm*I - w tau_w * d w /dt = a0*(Vm-Em) - w at each spike, w -> w + b0


	
setW()

	(destination message field)      Assigns field value.






	
getW()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTauW()

	(destination message field)      Assigns field value.






	
getTauW()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setA0()

	(destination message field)      Assigns field value.






	
getA0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setB0()

	(destination message field)      Assigns field value.






	
getB0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
w

	double (value field)      adaptation current with time constant tauW






	
tauW

	double (value field)      time constant of adaptation current w






	
a0

	double (value field)      factor for voltage-dependent term in evolution of adaptation current: tau_w dw/dt = a0*(Vm-Em) - w






	
b0

	double (value field)      b0 is added to w, the adaptation current on each spike













          

      

      

    

  

    
      
          
            
  
AdThreshIF


	
class AdThreshIF

	Leaky Integrate-and-Fire neuron with adaptive threshold.Based on Rossant, C., Goodman, D.F.M., Platkiewicz, J., and Brette, R. (2010).Rm*Cm * dVm/dt = -(Vm-Em) + Rm*ItauThresh * d threshAdaptive / dt = a0*(Vm-Em) - threshAdaptive at each spike, threshAdaptive is increased by threshJump the spiking threshold adapts as thresh + threshAdaptive


	
setThreshAdaptive()

	(destination message field)      Assigns field value.






	
getThreshAdaptive()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTauThresh()

	(destination message field)      Assigns field value.






	
getTauThresh()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setA0()

	(destination message field)      Assigns field value.






	
getA0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setThreshJump()

	(destination message field)      Assigns field value.






	
getThreshJump()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
threshAdaptive

	double (value field)      adaptative part of the threshold that decays with time constant tauThresh






	
tauThresh

	double (value field)      time constant of adaptative part of the threshold






	
a0

	double (value field)      factor for voltage-dependent term in evolution of adaptative threshold: tauThresh * d threshAdaptive / dt = a0*(Vm-Em) - threshAdaptive






	
threshJump

	double (value field)      threshJump is added to threshAdaptive on each spike













          

      

      

    

  

    
      
          
            
  
Adaptor


	
class Adaptor

	This is the adaptor class. It is used in interfacing different kinds of solver with each other, especially for electrical to chemical signeur models. The Adaptor class is the core of the API for interfacing between different solution engines. It is currently in use for interfacing between chemical and electrical simulations, but could be used for other cases such as mechanical models. The API for interfacing between solution engines rests on  the following capabilities of MOOSE. 1. The object-oriented interface with classes mapped to biological and modeling concepts such as electrical and chemical compartments, ion channels and molecular pools. 2. The invisible mapping of Solvers (Objects implementing numerical engines) to the object-oriented interface. Solvers work behind the  scenes to update the objects. 3. The messaging interface which allows any visible field to be  accessed and updated from any other object.  4. The clock-based scheduler which drives operations of any subset of objects at any interval. For example, this permits the operations of field access and update to take place at quite different timescales  from the numerical engines. 5. The implementation of Adaptor classes. These perform a linear transformation::       (y = scale * (x + inputOffset) + outputOffset )  where y is output and x is the input. The input is the average of any number of sources (through messages) and any number of timesteps. The output goes to any number of targets, again through messages. It is worth adding that messages can transport arbitrary data structures, so it would also be possible to devise a complicated opaque message directly between solvers. The implementation of Adaptors working on visible fields does this much more transparently and gives the user  facile control over the scaling transformatoin. These adaptors are used especially in the rdesigneur framework of MOOSE, which enables multiscale reaction-diffusion and electrical signaling models. As an example of this API in operation, I consider two mappings:  1. Calcium mapped from electrical to chemical computations. 2. phosphorylation state of a channel mapped to the channel conductance. 1. Calcium mapping. Problem statement. Calcium is computed in the electrical solver as one or more pools that are fed by calcium currents, and is removed by an exponential  decay process. This calcium pool is non-diffusive in the current  electrical solver. It has to be mapped to chemical calcium pools at a different spatial discretization, which do diffuse. In terms of the list of capabilities described above, this is how the API works.        1. The electrical model is partitioned into a number of electrical              compartments, some of which have the ‘electrical’ calcium pool          as child object in a UNIX filesystem-like tree. Thus the                ‘electrical’ calcium is represented as an object with           concentration, location and so on.      2. The Solver computes the time-course of evolution of the calcium              concentration. Whenever any function queries the ‘concentration’                field of the calcium object, the Solver provides this value.  3. Messaging couples the ‘electrical’ calcium pool concentration to       the adaptor (see point 5). This can either be a ‘push’ operation,       where the solver pushes out the calcium value at its internal   update rate, or a ‘pull’ operation where the adaptor requests   the calcium concentration.  4. The clock-based scheduler keeps the electrical and chemical solvers      ticking away, but it also can drive the operations of the adaptor.      Thus the rate of updates to and from the adaptor can be controlled.  5. The adaptor averages its inputs. Say the electrical solver is   going at a timestep of 50 usec, and the chemical solver at 5000         usec. The adaptor will take 100 samples of the electrical       concentration, and average them to compute the ‘input’ to the   linear scaling. Suppose that the electrical model has calcium units     of micromolar, but has a zero baseline. The chemical model has          units of millimolar and a baseline of 1e-4 millimolar. This gives:      y = 0.001x + 1e-4       At the end of this calculation, the adaptor will typically ‘push’       its output to the chemical solver. Here we have similar situation       to item (1), where the chemical entities are calcium pools in   space, each with their own calcium concentration.       The messaging (3) determines another aspect of the mapping here:        the fan in or fan out. In this case, a single electrical        compartment may house 10 chemical compartments. Then the output         message from the adaptor goes to update the calcium pool        concentration on the appropriate 10 objects representing calcium        in each of the compartments. In much the same manner, the phosphorylation state can regulate channel properties.  1. The chemical model contains spatially distributed chemical pools   that represent the unphosphorylated state of the channel, which in      this example is the conducting form. This concentration of this         unphosphorylated state is affected by the various reaction-     diffusion events handled by the chemical solver, below.  2. The chemical solver updates the concentrations      of the pool objects as per reaction-diffusion calculations.  3. Messaging couples these concentration terms to the adaptor. In this     case we have many chemical pool objects for every electrical    compartment. There would be a single adaptor for each electrical        compartment, and it would average all the input values for calcium      concentration, one for each mesh point in the chemical calculation.     As before, the access to these fields could be through a ‘push’         or a ‘pull’ operation.  4. The clock-based scheduler oeperates as above.  5. The adaptor averages the spatially distributed inputs from calcium,        and now does a different linear transform. In this case it converts     chemical concentration into the channel conductance. As before,         the ‘electrical’ channel is an object (point 1) with a field for        conductance, and this term is mapped into the internal data     structures of the solver (point 2) invisibly to the user.


	
proc

	void (shared message field)      This is a shared message to receive Process message from the scheduler.






	
setInputOffset()

	(destination message field)      Assigns field value.






	
getInputOffset()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setOutputOffset()

	(destination message field)      Assigns field value.






	
getOutputOffset()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setScale()

	(destination message field)      Assigns field value.






	
getScale()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getOutputValue()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
input()

	(destination message field)      Input message to the adaptor. If multiple inputs are received, the system averages the inputs.






	
process()

	(destination message field)      Handles ‘process’ call






	
reinit()

	(destination message field)      Handles ‘reinit’ call






	
output

	double (source message field)      Sends the output value every timestep.






	
requestOut

	PSt6vectorIdSaIdEE (source message field)      Sends out a request to a field with a double or array of doubles. Issued from the process call.Works for any number of targets.






	
inputOffset

	double (value field)      Offset to apply to input message, before scaling






	
outputOffset

	double (value field)      Offset to apply at output, after scaling






	
scale

	double (value field)      Scaling factor to apply to input






	
outputValue

	double (value field)      This is the linearly transformed output.













          

      

      

    

  

    
      
          
            
  
Annotator


	
class Annotator

	
	
setX()

	(destination message field)      Assigns field value.






	
getX()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setY()

	(destination message field)      Assigns field value.






	
getY()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setZ()

	(destination message field)      Assigns field value.






	
getZ()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNotes()

	(destination message field)      Assigns field value.






	
getNotes()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setColor()

	(destination message field)      Assigns field value.






	
getColor()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTextColor()

	(destination message field)      Assigns field value.






	
getTextColor()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setIcon()

	(destination message field)      Assigns field value.






	
getIcon()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSolver()

	(destination message field)      Assigns field value.






	
getSolver()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setRuntime()

	(destination message field)      Assigns field value.






	
getRuntime()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDirpath()

	(destination message field)      Assigns field value.






	
getDirpath()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setModeltype()

	(destination message field)      Assigns field value.






	
getModeltype()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
x

	double (value field)      x field. Typically display coordinate x






	
y

	double (value field)      y field. Typically display coordinate y






	
z

	double (value field)      z field. Typically display coordinate z






	
notes

	string (value field)      A string to hold some text notes about parent object






	
color

	string (value field)      A string to hold a text string specifying display color.Can be a regular English color name, or an rgb code rrrgggbbb






	
textColor

	string (value field)      A string to hold a text string specifying color for text labelthat might be on the display for this object.Can be a regular English color name, or an rgb code rrrgggbbb






	
icon

	string (value field)      A string to specify icon to use for display






	
solver

	string (value field)      A string to specify solver to store for Gui






	
runtime

	double (value field)      runtime field. Store runtime






	
dirpath

	string (value field)      directory path for Gui






	
modeltype

	string (value field)      model type













          

      

      

    

  

    
      
          
            
  
Arith


	
class Arith

	
	
proc

	void (shared message field)      Shared message for process and reinit






	
setFunction()

	(destination message field)      Assigns field value.






	
getFunction()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setOutputValue()

	(destination message field)      Assigns field value.






	
getOutputValue()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getArg1Value()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setAnyValue()

	(destination message field)      Assigns field value.






	
getAnyValue()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
arg1()

	(destination message field)      Handles argument 1. This just assigns it






	
arg2()

	(destination message field)      Handles argument 2. This just assigns it






	
arg3()

	(destination message field)      Handles argument 3. This sums in each input, and clears each clock tick.






	
arg1x2()

	(destination message field)      Store the product of the two arguments in output_






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
output

	double (source message field)      Sends out the computed value






	
function

	string (value field)      Arithmetic function to perform on inputs.






	
outputValue

	double (value field)      Value of output as computed last timestep.






	
arg1Value

	double (value field)      Value of arg1 as computed last timestep.






	
anyValue

	unsigned int,double (lookup field)      Value of any of the internal fields, output, arg1, arg2, arg3,as specified by the index argument from 0 to 3.













          

      

      

    

  

    
      
          
            
  
BinomialRng


	
class BinomialRng

	Binomially distributed random number generator.


	
setN()

	(destination message field)      Assigns field value.






	
getN()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setP()

	(destination message field)      Assigns field value.






	
getP()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
n

	double (value field)      Parameter n of the binomial distribution. In a coin toss experiment, this is the number of tosses.






	
p

	double (value field)      Parameter p of the binomial distribution. In a coin toss experiment, this is the probability of one of the two sides of the coin being on top.













          

      

      

    

  

    
      
          
            
  
CaConc


	
class CaConc

	CaConc: Calcium concentration pool. Takes current from a channel and keeps track of calcium buildup and depletion by a single exponential process.









          

      

      

    

  

    
      
          
            
  
CaConcBase


	
class CaConcBase

	CaConcBase: Base class for Calcium concentration pool. Takes current from a channel and keeps track of calcium buildup and depletion by a single exponential process.


	
proc

	void (shared message field)      Shared message to receive Process message from scheduler






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
setCa()

	(destination message field)      Assigns field value.






	
getCa()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCaBasal()

	(destination message field)      Assigns field value.






	
getCaBasal()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCa_base()

	(destination message field)      Assigns field value.






	
getCa_base()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTau()

	(destination message field)      Assigns field value.






	
getTau()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setB()

	(destination message field)      Assigns field value.






	
getB()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setThick()

	(destination message field)      Assigns field value.






	
getThick()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDiameter()

	(destination message field)      Assigns field value.






	
getDiameter()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setLength()

	(destination message field)      Assigns field value.






	
getLength()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCeiling()

	(destination message field)      Assigns field value.






	
getCeiling()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setFloor()

	(destination message field)      Assigns field value.






	
getFloor()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
current()

	(destination message field)      Calcium Ion current, due to be converted to conc.






	
currentFraction()

	(destination message field)      Fraction of total Ion current, that is carried by Ca2+.






	
increase()

	(destination message field)      Any input current that increases the concentration.






	
decrease()

	(destination message field)      Any input current that decreases the concentration.






	
basal()

	(destination message field)      Synonym for assignment of basal conc.






	
concOut

	double (source message field)      Concentration of Ca in pool






	
Ca

	double (value field)      Calcium concentration.






	
CaBasal

	double (value field)      Basal Calcium concentration.






	
Ca_base

	double (value field)      Basal Calcium concentration, synonym for CaBasal






	
tau

	double (value field)      Settling time for Ca concentration






	
B

	double (value field)      Volume scaling factor. Deprecated. This is a legacy field from GENESIS and exposes internal calculations. Please do not use.
B = 1/(vol * F) so that it obeys:
dC/dt = B*I_Ca - C/tau






	
thick

	double (value field)      Thickness of Ca shell, assumed cylindrical. Legal range is between zero and the radius. If outside this range it is taken as the radius. Default zero, ie, the shell is the entire thickness of the cylinder






	
diameter

	double (value field)      Diameter of Ca shell, assumed cylindrical






	
length

	double (value field)      Length of Ca shell, assumed cylindrical






	
ceiling

	double (value field)      Ceiling value for Ca concentration. If Ca > ceiling, Ca = ceiling. If ceiling <= 0.0, there is no upper limit on Ca concentration value.






	
floor

	double (value field)      Floor value for Ca concentration. If Ca < floor, Ca = floor













          

      

      

    

  

    
      
          
            
  
ChanBase


	
class ChanBase

	ChanBase: Base class for assorted ion channels.Presents a common interface for all of them.


	
channel

	void (shared message field)      This is a shared message to couple channel to compartment. The first entry is a MsgSrc to send Gk and Ek to the compartment The second entry is a MsgDest for Vm from the compartment.






	
ghk

	void (shared message field)      Message to Goldman-Hodgkin-Katz object






	
proc

	void (shared message field)      Shared message to receive Process message from scheduler






	
Vm()

	(destination message field)      Handles Vm message coming in from compartment






	
Vm()

	(destination message field)      Handles Vm message coming in from compartment






	
setGbar()

	(destination message field)      Assigns field value.






	
getGbar()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setModulation()

	(destination message field)      Assigns field value.






	
getModulation()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setEk()

	(destination message field)      Assigns field value.






	
getEk()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setGk()

	(destination message field)      Assigns field value.






	
getGk()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getIk()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
channelOut

	double,double (source message field)      Sends channel variables Gk and Ek to compartment






	
permeabilityOut

	double (source message field)      Conductance term going out to GHK object






	
IkOut

	double (source message field)      Channel current. This message typically goes to concenobjects that keep track of ion concentration.






	
Gbar

	double (value field)      Maximal channel conductance






	
modulation

	double (value field)      Modulation, i.e, scale factor for channel conductance.Note that this is a regular parameter, it is not recomputed each timestep. Thus one can use a slow update, say, from a molecule pool, to send a message to set the modulation, and it will stay at the set value even if the channel runs many timesteps before the next assignment. This differs from the GENESIS semantics of a similar message,which required update each timestep.






	
Ek

	double (value field)      Reversal potential of channel






	
Gk

	double (value field)      Channel conductance variable






	
Ik

	double (value field)      Channel current variable













          

      

      

    

  

    
      
          
            
  
ChemCompt


	
class ChemCompt

	Pure virtual base class for chemical compartments


	
setVolume()

	(destination message field)      Assigns field value.






	
getVolume()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getVoxelVolume()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getVoxelMidpoint()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setOneVoxelVolume()

	(destination message field)      Assigns field value.






	
getOneVoxelVolume()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumDimensions()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getStencilRate()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getStencilIndex()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
buildDefaultMesh()

	(destination message field)      Tells ChemCompt derived class to build a default mesh with thespecified volume and number of meshEntries.






	
setVolumeNotRates()

	(destination message field)      Changes volume but does not notify any child objects.Only works if the ChemCompt has just one voxel.This function will invalidate any concentration term inthe model. If you don’t know why you would want to do this,then you shouldn’t use this function.






	
resetStencil()

	(destination message field)      Resets the diffusion stencil to the core stencil that only includes the within-mesh diffusion. This is needed prior to building up the cross-mesh diffusion through junctions.






	
setNumMesh()

	(destination message field)      Assigns number of field entries in field array.






	
getNumMesh()

	(destination message field)      Requests number of field entries in field array.The requesting Element must provide a handler for the returned value.






	
voxelVolOut

	vector<double> (source message field)      Sends updated voxel volume out to Ksolve, Gsolve, and Dsolve.Used to request a recalculation of rates and of initial numbers.






	
volume

	double (value field)      Volume of entire chemical domain.Assigning this only works if the chemical compartment hasonly a single voxel. Otherwise ignored.This function goes through all objects below this on thetree, and rescales their molecule #s and rates as per thevolume change. This keeps concentration the same, and alsomaintains rates as expressed in volume units.






	
voxelVolume

	vector<double> (value field)      Vector of volumes of each of the voxels.






	
voxelMidpoint

	vector<double> (value field)      Vector of midpoint coordinates of each of the voxels. The size of this vector is 3N, where N is the number of voxels. The first N entries are for x, next N for y, last N are z.






	
numDimensions

	unsigned int (value field)      Number of spatial dimensions of this compartment. Usually 3 or 2






	
oneVoxelVolume

	unsigned int,double (lookup field)      Volume of specified voxel.






	
stencilRate

	unsigned int,vector<double> (lookup field)      vector of diffusion rates in the stencil for specified voxel.The identity of the coupled voxels is given by the partner field ‘stencilIndex’.Returns an empty vector for non-voxelized compartments.






	
stencilIndex

	unsigned int,vector<unsigned int> (lookup field)      vector of voxels diffusively coupled to the specified voxel.The diffusion rates into the coupled voxels is given by the partner field ‘stencilRate’.Returns an empty vector for non-voxelized compartments.













          

      

      

    

  

    
      
          
            
  
Cinfo


	
class Cinfo

	Class information object.


	
getDocs()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getBaseClass()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
docs

	string (value field)      Documentation






	
baseClass

	string (value field)      Name of base class













          

      

      

    

  

    
      
          
            
  
Clock


	
class Clock

	Every object scheduled for operations in MOOSE is connected to oneof the ‘Tick’ entries on the Clock.
The Clock manages 32 ‘Ticks’, each of which has its own dt,which is an integral multiple of the clock baseDt_. On every clock step the ticks are examined to see which of themis due for updating. When a tick is updated, the ‘process’ call of all the objects scheduled on that tick is called. Order of execution: If a subset of ticks are scheduled for execution at a given timestep, then they will be executed in numerical order, lowest tick first and highest last. There is no guarantee of execution order for objects within a clock tick.
The clock provides default scheduling for all objects which can be accessed using Clock::lookupDefaultTick( className ). Specific items of note are that the output/file dump objects are second-last, and the postmaster is last on the order of Ticks. The clock also starts up with some default timesteps for each of these ticks, and this can be overridden using the shell command setClock, or by directly assigning tickStep values on the clock object.
Which objects use which tick? As a rule of thumb, try this:
Electrical/compartmental model calculations: Ticks 0-7
Tables and output objects for electrical output: Tick 8
Diffusion solver: Tick 10
Chemical/compartmental model calculations: Ticks 11-17
Tables and output objects for chemical output: Tick 18
Unassigned: Ticks 20-29
Special: 30-31
Data output is a bit special, since you may want to store data at different rates for electrical and chemical processes in the same model. Here you will have to specifically assign distinct clock ticks for the tables/fileIO objects handling output at different time-resolutions. Typically one uses tick 8 and 18.
Here are the detailed mappings of class to tick.
|    Class                                 Tick              dt
|    DiffAmp                               0         50e-6
|    Interpol                              0         50e-6
|    PIDController         0         50e-6
|    PulseGen                              0         50e-6
|    StimulusTable         0         50e-6
|    testSched                             0         50e-6
|    VClamp                                0         50e-6
|  SynHandlerBase                    1               50e-6
|    SimpleSynHandler                1               50e-6
|  STDPSynHandler              1             50e-6


GraupnerBrunel2012CaPlasticitySynHandler    1               50e-6
SeqSynHandler               1               50e-6


CaConc                          1               50e-6
CaConcBase                      1               50e-6
DifShell                        1               50e-6
MgBlock                         1               50e-6
Nernst                          1               50e-6
RandSpike                       1               50e-6
ChanBase                        2               50e-6
IntFire                         2               50e-6
IntFireBase                     2               50e-6
LIF                             2               50e-6
QIF                             2               50e-6
ExIF                            2               50e-6
AdExIF                          2               50e-6
AdThreshIF                              2               50e-6
IzhIF                           2               50e-6
IzhikevichNrn                   2               50e-6
SynChan                         2               50e-6
NMDAChan                                2               50e-6
GapJunction                     2               50e-6
HHChannel                       2               50e-6
HHChannel2D                     2               50e-6
Leakage                         2               50e-6
MarkovChannel                   2               50e-6
MarkovGslSolver                 2               50e-6
MarkovRateTable                 2               50e-6
MarkovSolver                    2               50e-6
MarkovSolverBase                2               50e-6
RC                              2               50e-6
Compartment (init)              3               50e-6
CompartmentBase (init )         3               50e-6
SymCompartment  (init)          3               50e-6
Compartment                     4               50e-6
CompartmentBase                 4               50e-6
SymCompartment                  4               50e-6
SpikeGen                        5               50e-6
HSolve                          6               50e-6
SpikeStats                      7               50e-6
Table                           8               0.1e-3
TimeTable                       8               0.1e-3
Dsolve                          10              0.01
Adaptor                         11              0.1
Func                            12              0.1
Function                        12              0.1
Arith                           12              0.1
BufPool                         13              0.1
Pool                            13              0.1
PoolBase                        13              0.1
CplxEnzBase                     14              0.1
Enz                             14              0.1
EnzBase                         14              0.1
MMenz                           14              0.1
Reac                            14              0.1
ReacBase                        14              0.1
Gsolve  (init)                  15              0.1
Ksolve  (init)                  15              0.1
Gsolve                          16              0.1
Ksolve                          16              0.1
Stats                           17              0.1
Table2                          18              1
Streamer                        19              10
HDF5DataWriter                  30              1
HDF5WriterBase                  30              1
NSDFWriter                      30              1


PyRun                           30              1




PostMaster                      31              0.01

Note that the other classes are not scheduled at all.








	
clockControl

	void (shared message field)      Controls all scheduling aspects of Clock, usually from Shell






	
proc0

	void (shared message field)      Shared process/reinit message






	
proc1

	void (shared message field)      Shared process/reinit message






	
proc2

	void (shared message field)      Shared process/reinit message






	
proc3

	void (shared message field)      Shared process/reinit message






	
proc4

	void (shared message field)      Shared process/reinit message






	
proc5

	void (shared message field)      Shared process/reinit message






	
proc6

	void (shared message field)      Shared process/reinit message






	
proc7

	void (shared message field)      Shared process/reinit message






	
proc8

	void (shared message field)      Shared process/reinit message






	
proc9

	void (shared message field)      Shared process/reinit message






	
proc10

	void (shared message field)      Shared process/reinit message






	
proc11

	void (shared message field)      Shared process/reinit message






	
proc12

	void (shared message field)      Shared process/reinit message






	
proc13

	void (shared message field)      Shared process/reinit message






	
proc14

	void (shared message field)      Shared process/reinit message






	
proc15

	void (shared message field)      Shared process/reinit message






	
proc16

	void (shared message field)      Shared process/reinit message






	
proc17

	void (shared message field)      Shared process/reinit message






	
proc18

	void (shared message field)      Shared process/reinit message






	
proc19

	void (shared message field)      Shared process/reinit message






	
proc20

	void (shared message field)      Shared process/reinit message






	
proc21

	void (shared message field)      Shared process/reinit message






	
proc22

	void (shared message field)      Shared process/reinit message






	
proc23

	void (shared message field)      Shared process/reinit message






	
proc24

	void (shared message field)      Shared process/reinit message






	
proc25

	void (shared message field)      Shared process/reinit message






	
proc26

	void (shared message field)      Shared process/reinit message






	
proc27

	void (shared message field)      Shared process/reinit message






	
proc28

	void (shared message field)      Shared process/reinit message






	
proc29

	void (shared message field)      Shared process/reinit message






	
proc30

	void (shared message field)      Shared process/reinit message






	
proc31

	void (shared message field)      Shared process/reinit message






	
setBaseDt()

	(destination message field)      Assigns field value.






	
getBaseDt()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getRunTime()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getCurrentTime()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNsteps()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumTicks()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getStride()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getCurrentStep()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getDts()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getIsRunning()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTickStep()

	(destination message field)      Assigns field value.






	
getTickStep()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTickDt()

	(destination message field)      Assigns field value.






	
getTickDt()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getDefaultTick()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
start()

	(destination message field)      Sets off the simulation for the specified duration






	
step()

	(destination message field)      Sets off the simulation for the specified # of steps. Here each step advances the simulation by the timestep of the smallest tick that is actually in use.






	
stop()

	(destination message field)      Halts the simulation, with option to restart seamlessly






	
reinit()

	(destination message field)      Zeroes out all ticks, starts at t = 0






	
finished

	void (source message field)      Signal for completion of run






	
process0

	PK8ProcInfo (source message field)      process for Tick 0






	
reinit0

	PK8ProcInfo (source message field)      reinit for Tick 0






	
process1

	PK8ProcInfo (source message field)      process for Tick 1






	
reinit1

	PK8ProcInfo (source message field)      reinit for Tick 1






	
process2

	PK8ProcInfo (source message field)      process for Tick 2






	
reinit2

	PK8ProcInfo (source message field)      reinit for Tick 2






	
process3

	PK8ProcInfo (source message field)      process for Tick 3






	
reinit3

	PK8ProcInfo (source message field)      reinit for Tick 3






	
process4

	PK8ProcInfo (source message field)      process for Tick 4






	
reinit4

	PK8ProcInfo (source message field)      reinit for Tick 4






	
process5

	PK8ProcInfo (source message field)      process for Tick 5






	
reinit5

	PK8ProcInfo (source message field)      reinit for Tick 5






	
process6

	PK8ProcInfo (source message field)      process for Tick 6






	
reinit6

	PK8ProcInfo (source message field)      reinit for Tick 6






	
process7

	PK8ProcInfo (source message field)      process for Tick 7






	
reinit7

	PK8ProcInfo (source message field)      reinit for Tick 7






	
process8

	PK8ProcInfo (source message field)      process for Tick 8






	
reinit8

	PK8ProcInfo (source message field)      reinit for Tick 8






	
process9

	PK8ProcInfo (source message field)      process for Tick 9






	
reinit9

	PK8ProcInfo (source message field)      reinit for Tick 9






	
process10

	PK8ProcInfo (source message field)      process for Tick 10






	
reinit10

	PK8ProcInfo (source message field)      reinit for Tick 10






	
process11

	PK8ProcInfo (source message field)      process for Tick 11






	
reinit11

	PK8ProcInfo (source message field)      reinit for Tick 11






	
process12

	PK8ProcInfo (source message field)      process for Tick 12






	
reinit12

	PK8ProcInfo (source message field)      reinit for Tick 12






	
process13

	PK8ProcInfo (source message field)      process for Tick 13






	
reinit13

	PK8ProcInfo (source message field)      reinit for Tick 13






	
process14

	PK8ProcInfo (source message field)      process for Tick 14






	
reinit14

	PK8ProcInfo (source message field)      reinit for Tick 14






	
process15

	PK8ProcInfo (source message field)      process for Tick 15






	
reinit15

	PK8ProcInfo (source message field)      reinit for Tick 15






	
process16

	PK8ProcInfo (source message field)      process for Tick 16






	
reinit16

	PK8ProcInfo (source message field)      reinit for Tick 16






	
process17

	PK8ProcInfo (source message field)      process for Tick 17






	
reinit17

	PK8ProcInfo (source message field)      reinit for Tick 17






	
process18

	PK8ProcInfo (source message field)      process for Tick 18






	
reinit18

	PK8ProcInfo (source message field)      reinit for Tick 18






	
process19

	PK8ProcInfo (source message field)      process for Tick 19






	
reinit19

	PK8ProcInfo (source message field)      reinit for Tick 19






	
process20

	PK8ProcInfo (source message field)      process for Tick 20






	
reinit20

	PK8ProcInfo (source message field)      reinit for Tick 20






	
process21

	PK8ProcInfo (source message field)      process for Tick 21






	
reinit21

	PK8ProcInfo (source message field)      reinit for Tick 21






	
process22

	PK8ProcInfo (source message field)      process for Tick 22






	
reinit22

	PK8ProcInfo (source message field)      reinit for Tick 22






	
process23

	PK8ProcInfo (source message field)      process for Tick 23






	
reinit23

	PK8ProcInfo (source message field)      reinit for Tick 23






	
process24

	PK8ProcInfo (source message field)      process for Tick 24






	
reinit24

	PK8ProcInfo (source message field)      reinit for Tick 24






	
process25

	PK8ProcInfo (source message field)      process for Tick 25






	
reinit25

	PK8ProcInfo (source message field)      reinit for Tick 25






	
process26

	PK8ProcInfo (source message field)      process for Tick 26






	
reinit26

	PK8ProcInfo (source message field)      reinit for Tick 26






	
process27

	PK8ProcInfo (source message field)      process for Tick 27






	
reinit27

	PK8ProcInfo (source message field)      reinit for Tick 27






	
process28

	PK8ProcInfo (source message field)      process for Tick 28






	
reinit28

	PK8ProcInfo (source message field)      reinit for Tick 28






	
process29

	PK8ProcInfo (source message field)      process for Tick 29






	
reinit29

	PK8ProcInfo (source message field)      reinit for Tick 29






	
process30

	PK8ProcInfo (source message field)      process for Tick 30






	
reinit30

	PK8ProcInfo (source message field)      reinit for Tick 30






	
process31

	PK8ProcInfo (source message field)      process for Tick 31






	
reinit31

	PK8ProcInfo (source message field)      reinit for Tick 31






	
baseDt

	double (value field)      Base timestep for simulation. This is the smallest dt out of all the clock ticks. By definition all other timesteps are integral multiples of this, and are rounded to ensure that this is the case .






	
runTime

	double (value field)      Duration to run the simulation






	
currentTime

	double (value field)      Current simulation time






	
nsteps

	unsigned long (value field)      Number of steps to advance the simulation, in units of the smallest timestep on the clock ticks






	
numTicks

	unsigned int (value field)      Number of clock ticks






	
stride

	unsigned int (value field)      Number by which the simulation advances the current step on each cycle. stride = smallest active timestep/smallest defined timestep.






	
currentStep

	unsigned long (value field)      Current simulation step






	
dts

	vector<double> (value field)      Utility function returning the dt (timestep) of all ticks.






	
isRunning

	bool (value field)      Utility function to report if simulation is in progress.






	
tickStep

	unsigned int,unsigned int (lookup field)      Step size of specified Tick, as integral multiple of dt_ A zero step size means that the Tick is inactive






	
tickDt

	unsigned int,double (lookup field)      Timestep dt of specified Tick. Always integral multiple of dt_. If you assign a non-integer multiple it will round off.  A zero timestep means that the Tick is inactive






	
defaultTick

	string,unsigned int (lookup field)      Looks up the default Tick to use for the specified class. If no tick is assigned, as for classes without a process operation or zombie classes, the tick is ~0U. If nothing can be found returns 0 and emits a warning.













          

      

      

    

  

    
      
          
            
  
Compartment


	
class Compartment

	Compartment object, for branching neuron models.









          

      

      

    

  

    
      
          
            
  
CompartmentBase


	
class CompartmentBase

	CompartmentBase object, for branching neuron models.


	
proc

	void (shared message field)      This is a shared message to receive Process messages from the scheduler objects. The Process should be called _second_ in each clock tick, after the Init message.The first entry in the shared msg is a MsgDest for the Process operation. It has a single argument, ProcInfo, which holds lots of information about current time, thread, dt and so on. The second entry is a MsgDest for the Reinit operation. It also uses ProcInfo.






	
init

	void (shared message field)      This is a shared message to receive Init messages from the scheduler objects. Its job is to separate the compartmental calculations from the message passing. It doesn’t really need to be shared, as it does not use the reinit part, but the scheduler objects expect this form of message for all scheduled output. The first entry is a MsgDest for the Process operation. It has a single argument, ProcInfo, which holds lots of information about current time, thread, dt and so on. The second entry is a dummy MsgDest for the Reinit operation. It also uses ProcInfo.






	
channel

	void (shared message field)      This is a shared message from a compartment to channels. The first entry is a MsgDest for the info coming from the channel. It expects Gk and Ek from the channel as args. The second entry is a MsgSrc sending Vm






	
axial

	void (shared message field)      This is a shared message between asymmetric compartments. axial messages (this kind) connect up to raxial messages (defined below). The soma should use raxial messages to connect to the axial message of all the immediately adjacent dendritic compartments.This puts the (low) somatic resistance in series with these dendrites. Dendrites should then use raxial messages toconnect on to more distal dendrites. In other words, raxial messages should face outward from the soma. The first entry is a MsgSrc sending Vm to the axialFuncof the target compartment. The second entry is a MsgDest for the info coming from the other compt. It expects Ra and Vm from the other compt as args. Note that the message is named after the source type.






	
raxial

	void (shared message field)      This is a raxial shared message between asymmetric compartments. The first entry is a MsgDest for the info coming from the other compt. It expects Vm from the other compt as an arg. The second is a MsgSrc sending Ra and Vm to the raxialFunc of the target compartment.






	
setVm()

	(destination message field)      Assigns field value.






	
getVm()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCm()

	(destination message field)      Assigns field value.






	
getCm()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setEm()

	(destination message field)      Assigns field value.






	
getEm()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getIm()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setInject()

	(destination message field)      Assigns field value.






	
getInject()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setInitVm()

	(destination message field)      Assigns field value.






	
getInitVm()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setRm()

	(destination message field)      Assigns field value.






	
getRm()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setRa()

	(destination message field)      Assigns field value.






	
getRa()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDiameter()

	(destination message field)      Assigns field value.






	
getDiameter()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setLength()

	(destination message field)      Assigns field value.






	
getLength()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setX0()

	(destination message field)      Assigns field value.






	
getX0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setY0()

	(destination message field)      Assigns field value.






	
getY0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setZ0()

	(destination message field)      Assigns field value.






	
getZ0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setX()

	(destination message field)      Assigns field value.






	
getX()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setY()

	(destination message field)      Assigns field value.






	
getY()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setZ()

	(destination message field)      Assigns field value.






	
getZ()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
injectMsg()

	(destination message field)      The injectMsg corresponds to the INJECT message in the GENESIS compartment. Unlike the ‘inject’ field, any value assigned by handleInject applies only for a single timestep.So it needs to be updated every dt for a steady (or varying)injection current






	
randInject()

	(destination message field)      Sends a random injection current to the compartment. Must beupdated each timestep.Arguments to randInject are probability and current.






	
injectMsg()

	(destination message field)      The injectMsg corresponds to the INJECT message in the GENESIS compartment. Unlike the ‘inject’ field, any value assigned by handleInject applies only for a single timestep.So it needs to be updated every dt for a steady (or varying)injection current






	
cable()

	(destination message field)      Message for organizing compartments into groups, calledcables. Doesn’t do anything.






	
displace()

	(destination message field)      Displaces compartment by specified vector






	
setGeomAndElec()

	(destination message field)      Assigns length and dia and accounts for any electrical scaling needed as a result.






	
process()

	(destination message field)      Handles ‘process’ call






	
reinit()

	(destination message field)      Handles ‘reinit’ call






	
initProc()

	(destination message field)      Handles Process call for the ‘init’ phase of the CompartmentBase calculations. These occur as a separate Tick cycle from the regular proc cycle, and should be called before the proc msg.






	
initReinit()

	(destination message field)      Handles Reinit call for the ‘init’ phase of the CompartmentBase calculations.






	
handleChannel()

	(destination message field)      Handles conductance and Reversal potential arguments from Channel






	
handleRaxial()

	(destination message field)      Handles Raxial info: arguments are Ra and Vm.






	
handleAxial()

	(destination message field)      Handles Axial information. Argument is just Vm.






	
VmOut

	double (source message field)      Sends out Vm value of compartment on each timestep






	
axialOut

	double (source message field)      Sends out Vm value of compartment to adjacent compartments,on each timestep






	
raxialOut

	double,double (source message field)      Sends out Raxial information on each timestep, fields are Ra and Vm






	
Vm

	double (value field)      membrane potential






	
Cm

	double (value field)      Membrane capacitance






	
Em

	double (value field)      Resting membrane potential






	
Im

	double (value field)      Current going through membrane






	
inject

	double (value field)      Current injection to deliver into compartment






	
initVm

	double (value field)      Initial value for membrane potential






	
Rm

	double (value field)      Membrane resistance






	
Ra

	double (value field)      Axial resistance of compartment






	
diameter

	double (value field)      Diameter of compartment






	
length

	double (value field)      Length of compartment






	
x0

	double (value field)      X coordinate of start of compartment






	
y0

	double (value field)      Y coordinate of start of compartment






	
z0

	double (value field)      Z coordinate of start of compartment






	
x

	double (value field)      x coordinate of end of compartment






	
y

	double (value field)      y coordinate of end of compartment






	
z

	double (value field)      z coordinate of end of compartment













          

      

      

    

  

    
      
          
            
  
CplxEnzBase


	
class CplxEnzBase

	:            Base class for mass-action enzymes in which there is an  explicit pool for the enzyme-substrate complex. It models the reaction: E + S <===> E.S —-> E + P


	
enz

	void (shared message field)      Connects to enzyme pool






	
cplx

	void (shared message field)      Connects to enz-sub complex pool






	
setK1()

	(destination message field)      Assigns field value.






	
getK1()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setK2()

	(destination message field)      Assigns field value.






	
getK2()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setK3()

	(destination message field)      Assigns field value.






	
getK3()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setRatio()

	(destination message field)      Assigns field value.






	
getRatio()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setConcK1()

	(destination message field)      Assigns field value.






	
getConcK1()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
enzDest()

	(destination message field)      Handles # of molecules of Enzyme






	
cplxDest()

	(destination message field)      Handles # of molecules of enz-sub complex






	
enzOut

	double,double (source message field)      Sends out increment of molecules on product each timestep






	
cplxOut

	double,double (source message field)      Sends out increment of molecules on product each timestep






	
k1

	double (value field)      Forward reaction from enz + sub to complex, in # units.This parameter is subordinate to the Km. This means thatwhen Km is changed, this changes. It also means that whenk2 or k3 (aka kcat) are changed, we assume that Km remainsfixed, and as a result k1 must change. It is only whenk1 is assigned directly that we assume that the user knowswhat they are doing, and we adjust Km accordingly.k1 is also subordinate to the ‘ratio’ field, since setting the ratio reassigns k2.Should you wish to assign the elementary rates k1, k2, k3,of an enzyme directly, always assign k1 last.






	
k2

	double (value field)      Reverse reaction from complex to enz + sub






	
k3

	double (value field)      Forward rate constant from complex to product + enz






	
ratio

	double (value field)      Ratio of k2/k3






	
concK1

	double (value field)      K1 expressed in concentration (1/millimolar.sec) unitsThis parameter is subordinate to the Km. This means thatwhen Km is changed, this changes. It also means that whenk2 or k3 (aka kcat) are changed, we assume that Km remainsfixed, and as a result concK1 must change. It is only whenconcK1 is assigned directly that we assume that the user knowswhat they are doing, and we adjust Km accordingly.concK1 is also subordinate to the ‘ratio’ field, sincesetting the ratio reassigns k2.Should you wish to assign the elementary rates concK1, k2, k3,of an enzyme directly, always assign concK1 last.













          

      

      

    

  

    
      
          
            
  
CubeMesh


	
class CubeMesh

	
	
setIsToroid()

	(destination message field)      Assigns field value.






	
getIsToroid()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setPreserveNumEntries()

	(destination message field)      Assigns field value.






	
getPreserveNumEntries()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setAlwaysDiffuse()

	(destination message field)      Assigns field value.






	
getAlwaysDiffuse()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setX0()

	(destination message field)      Assigns field value.






	
getX0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setY0()

	(destination message field)      Assigns field value.






	
getY0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setZ0()

	(destination message field)      Assigns field value.






	
getZ0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setX1()

	(destination message field)      Assigns field value.






	
getX1()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setY1()

	(destination message field)      Assigns field value.






	
getY1()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setZ1()

	(destination message field)      Assigns field value.






	
getZ1()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDx()

	(destination message field)      Assigns field value.






	
getDx()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDy()

	(destination message field)      Assigns field value.






	
getDy()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDz()

	(destination message field)      Assigns field value.






	
getDz()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNx()

	(destination message field)      Assigns field value.






	
getNx()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNy()

	(destination message field)      Assigns field value.






	
getNy()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNz()

	(destination message field)      Assigns field value.






	
getNz()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCoords()

	(destination message field)      Assigns field value.






	
getCoords()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setMeshToSpace()

	(destination message field)      Assigns field value.






	
getMeshToSpace()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSpaceToMesh()

	(destination message field)      Assigns field value.






	
getSpaceToMesh()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSurface()

	(destination message field)      Assigns field value.






	
getSurface()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
isToroid

	bool (value field)      Flag. True when the mesh should be toroidal, that is,when going beyond the right face brings us around to theleft-most mesh entry, and so on. If we have nx, ny, nzentries, this rule means that the coordinate (x, ny, z)will map onto (x, 0, z). Similarly,(-1, y, z) -> (nx-1, y, z)Default is false






	
preserveNumEntries

	bool (value field)      Flag. When it is true, the numbers nx, ny, nz remainunchanged when x0, x1, y0, y1, z0, z1 are altered. Thusdx, dy, dz would change instead. When it is false, thendx, dy, dz remain the same and nx, ny, nz are altered.Default is true






	
alwaysDiffuse

	bool (value field)      Flag. When it is true, the mesh matches up sequential mesh entries for diffusion and chmestry. This is regardless of spatial location, and is guaranteed to set up at least the home reaction systemDefault is false






	
x0

	double (value field)      X coord of one end






	
y0

	double (value field)      Y coord of one end






	
z0

	double (value field)      Z coord of one end






	
x1

	double (value field)      X coord of other end






	
y1

	double (value field)      Y coord of other end






	
z1

	double (value field)      Z coord of other end






	
dx

	double (value field)      X size for mesh






	
dy

	double (value field)      Y size for mesh






	
dz

	double (value field)      Z size for mesh






	
nx

	unsigned int (value field)      Number of subdivisions in mesh in X






	
ny

	unsigned int (value field)      Number of subdivisions in mesh in Y






	
nz

	unsigned int (value field)      Number of subdivisions in mesh in Z






	
coords

	vector<double> (value field)      Set all the coords of the cuboid at once. Order is:x0 y0 z0   x1 y1 z1   dx dy dzWhen this is done, it recalculates the numEntries since dx, dy and dz are given explicitly.As a special hack, you can leave out dx, dy and dz and use a vector of size 6. In this case the operation assumes that nx, ny and nz are to be preserved and dx, dy and dz will be recalculated.






	
meshToSpace

	vector<unsigned int> (value field)      Array in which each mesh entry stores spatial (cubic) index






	
spaceToMesh

	vector<unsigned int> (value field)      Array in which each space index (obtained by linearizing the xyz coords) specifies which meshIndex is present.In many cases the index will store the EMPTY flag if there isno mesh entry at that spatial location






	
surface

	vector<unsigned int> (value field)      Array specifying surface of arbitrary volume within the CubeMesh. All entries must fall within the cuboid. Each entry of the array is a spatial index obtained by linearizing the ix, iy, iz coordinates within the cuboid. So, each entry == ( iz * ny + iy ) * nx + ixNote that the voxels listed on the surface are WITHIN the volume of the CubeMesh object













          

      

      

    

  

    
      
          
            
  
CylMesh


	
class CylMesh

	
	
setX0()

	(destination message field)      Assigns field value.






	
getX0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setY0()

	(destination message field)      Assigns field value.






	
getY0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setZ0()

	(destination message field)      Assigns field value.






	
getZ0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setR0()

	(destination message field)      Assigns field value.






	
getR0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setX1()

	(destination message field)      Assigns field value.






	
getX1()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setY1()

	(destination message field)      Assigns field value.






	
getY1()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setZ1()

	(destination message field)      Assigns field value.






	
getZ1()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setR1()

	(destination message field)      Assigns field value.






	
getR1()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDiffLength()

	(destination message field)      Assigns field value.






	
getDiffLength()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCoords()

	(destination message field)      Assigns field value.






	
getCoords()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumDiffCompts()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getTotLength()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
x0

	double (value field)      x coord of one end






	
y0

	double (value field)      y coord of one end






	
z0

	double (value field)      z coord of one end






	
r0

	double (value field)      Radius of one end






	
x1

	double (value field)      x coord of other end






	
y1

	double (value field)      y coord of other end






	
z1

	double (value field)      z coord of other end






	
r1

	double (value field)      Radius of other end






	
diffLength

	double (value field)      Length constant to use for subdivisionsThe system will attempt to subdivide using compartments oflength diffLength on average. If the cylinder has different enddiameters r0 and r1, it will scale to smaller lengthsfor the smaller diameter end and vice versa.Once the value is set it will recompute diffLength as totLength/numEntries






	
coords

	vector<double> (value field)      All the coords as a single vector: x0 y0 z0  x1 y1 z1  r0 r1 diffLength






	
numDiffCompts

	unsigned int (value field)      Number of diffusive compartments in model






	
totLength

	double (value field)      Total length of cylinder













          

      

      

    

  

    
      
          
            
  
DiagonalMsg


	
class DiagonalMsg

	
	
setStride()

	(destination message field)      Assigns field value.






	
getStride()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
stride

	int (value field)      The stride is the increment to the src DataId that gives thedest DataId. It can be positive or negative, but bounds checkingtakes place and it does not wrap around.













          

      

      

    

  

    
      
          
            
  
DifShell


	
class DifShell

	DifShell object: Models diffusion of an ion (typically calcium) within an electric compartment. A DifShell is an iso-concentration region with respect to the ion. Adjoining DifShells exchange flux of this ion, and also keep track of changes in concentration due to pumping, buffering and channel currents, by talking to the appropriate objects.


	
process_0

	void (shared message field)      Here we create 2 shared finfos to attach with the Ticks. This is because we want to perform DifShell computations in 2 stages, much as in the Compartment object. In the first stage we send out the concentration value to other DifShells and Buffer elements. We also receive fluxes and currents and sum them up to compute ( dC / dt ). In the second stage we find the new C value using an explicit integration method. This 2-stage procedure eliminates the need to store and send prev_C values, as was common in GENESIS.






	
process_1

	void (shared message field)      Second process call






	
buffer

	
	void (shared message field)      This is a shared message from a DifShell to a Buffer (FixBuffer or DifBuffer). During stage 0:

	

	DifShell sends ion concentration








	Buffer updates buffer concentration and sends it back immediately using a call-back.


	DifShell updates the time-derivative ( dC / dt )






	During stage 1:

	
	DifShell advances concentration C








This scheme means that the Buffer does not need to be scheduled, and it does its computations when it receives a cue from the DifShell. May not be the best idea, but it saves us from doing the above computations in 3 stages instead of 2.






	
innerDif

	void (shared message field)      This shared message (and the next) is between DifShells: adjoining shells exchange information to find out the flux between them. Using this message, an inner shell sends to, and receives from its outer shell.






	
outerDif

	void (shared message field)      Using this message, an outer shell sends to, and receives from its inner shell.






	
getC()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCeq()

	(destination message field)      Assigns field value.






	
getCeq()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setD()

	(destination message field)      Assigns field value.






	
getD()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setValence()

	(destination message field)      Assigns field value.






	
getValence()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setLeak()

	(destination message field)      Assigns field value.






	
getLeak()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setShapeMode()

	(destination message field)      Assigns field value.






	
getShapeMode()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setLength()

	(destination message field)      Assigns field value.






	
getLength()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDiameter()

	(destination message field)      Assigns field value.






	
getDiameter()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setThickness()

	(destination message field)      Assigns field value.






	
getThickness()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setVolume()

	(destination message field)      Assigns field value.






	
getVolume()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setOuterArea()

	(destination message field)      Assigns field value.






	
getOuterArea()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setInnerArea()

	(destination message field)      Assigns field value.






	
getInnerArea()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Reinit happens only in stage 0






	
process()

	(destination message field)      Handle process call






	
reinit()

	(destination message field)      Reinit happens only in stage 0






	
reaction()

	(destination message field)      Here the DifShell receives reaction rates (forward and backward), and concentrations for the free-buffer and bound-buffer molecules.






	
fluxFromOut()

	(destination message field)      Destination message






	
fluxFromIn()

	(destination message field)






	
influx()

	(destination message field)






	
outflux()

	(destination message field)






	
fInflux()

	(destination message field)






	
fOutflux()

	(destination message field)






	
storeInflux()

	(destination message field)






	
storeOutflux()

	(destination message field)






	
tauPump()

	(destination message field)






	
eqTauPump()

	(destination message field)






	
mmPump()

	(destination message field)






	
hillPump()

	(destination message field)






	
concentrationOut

	double (source message field)      Sends out concentration






	
innerDifSourceOut

	double,double (source message field)      Sends out source information.






	
outerDifSourceOut

	double,double (source message field)      Sends out source information.






	
C

	double (value field)      Concentration C is computed by the DifShell and is read-only






	
Ceq

	double (value field)






	
D

	double (value field)






	
valence

	double (value field)






	
leak

	double (value field)






	
shapeMode

	unsigned int (value field)






	
length

	double (value field)






	
diameter

	double (value field)






	
thickness

	double (value field)






	
volume

	double (value field)






	
outerArea

	double (value field)






	
innerArea

	double (value field)













          

      

      

    

  

    
      
          
            
  
DiffAmp


	
class DiffAmp

	A difference amplifier. Output is the difference between the total plus inputs and the total minus inputs multiplied by gain. Gain can be set statically as a field or can be a destination message and thus dynamically determined by the output of another object. Same as GENESIS diffamp object.


	
proc

	void (shared message field)      This is a shared message to receive Process messages from the scheduler objects.The first entry in the shared msg is a MsgDest for the Process operation. It has a single argument, ProcInfo, which holds lots of information about current time, thread, dt and so on. The second entry is a MsgDest for the Reinit operation. It also uses ProcInfo.






	
setGain()

	(destination message field)      Assigns field value.






	
getGain()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSaturation()

	(destination message field)      Assigns field value.






	
getSaturation()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getOutputValue()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
gainIn()

	(destination message field)      Destination message to control gain dynamically.






	
plusIn()

	(destination message field)      Positive input terminal of the amplifier. All the messages connected here are summed up to get total positive input.






	
minusIn()

	(destination message field)      Negative input terminal of the amplifier. All the messages connected here are summed up to get total positive input.






	
process()

	(destination message field)      Handles process call, updates internal time stamp.






	
reinit()

	(destination message field)      Handles reinit call.






	
output

	double (source message field)      Current output level.






	
gain

	double (value field)      Gain of the amplifier. The output of the amplifier is the difference between the totals in plus and minus inputs multiplied by the gain. Defaults to 1






	
saturation

	double (value field)      Saturation is the bound on the output. If output goes beyond the +/-saturation range, it is truncated to the closer of +saturation and -saturation. Defaults to the maximum double precision floating point number representable on the system.






	
outputValue

	double (value field)      Output of the amplifier, i.e. gain * (plus - minus).













          

      

      

    

  

    
      
          
            
  
Dsolve


	
class Dsolve

	
	
proc

	void (shared message field)      Shared message for process and reinit






	
setStoich()

	(destination message field)      Assigns field value.






	
getStoich()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setPath()

	(destination message field)      Assigns field value.






	
getPath()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCompartment()

	(destination message field)      Assigns field value.






	
getCompartment()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumVoxels()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumAllVoxels()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNVec()

	(destination message field)      Assigns field value.






	
getNVec()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNumPools()

	(destination message field)      Assigns field value.






	
getNumPools()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDiffVol1()

	(destination message field)      Assigns field value.






	
getDiffVol1()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDiffVol2()

	(destination message field)      Assigns field value.






	
getDiffVol2()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDiffScale()

	(destination message field)      Assigns field value.






	
getDiffScale()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
buildMeshJunctions()

	(destination message field)      Builds junctions between mesh on current Dsolve, and another Dsolve. The meshes have to be compatible.






	
buildNeuroMeshJunctions()

	(destination message field)      Builds junctions between NeuroMesh, SpineMesh and PsdMesh






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
stoich

	Id (value field)      Stoichiometry object for handling this reaction system.






	
path

	string (value field)      Path of reaction system. Must include all the pools that are to be handled by the Dsolve, can also include other random objects, which will be ignored.






	
compartment

	Id (value field)      Reac-diff compartment in which this diffusion system is embedded.






	
numVoxels

	unsigned int (value field)      Number of voxels in the core reac-diff system, on the current diffusion solver.






	
numAllVoxels

	unsigned int (value field)      Number of voxels in the core reac-diff system, on the current diffusion solver.






	
numPools

	unsigned int (value field)      Number of molecular pools in the entire reac-diff system, including variable, function and buffered.






	
nVec

	unsigned int,vector<double> (lookup field)      vector of # of molecules along diffusion length, looked up by pool index






	
diffVol1

	unsigned int,double (lookup field)      Volume used to set diffusion scaling: firstVol[ voxel# ] Particularly relevant for diffusion between PSD and head.






	
diffVol2

	unsigned int,double (lookup field)      Volume used to set diffusion scaling: secondVol[ voxel# ] Particularly relevant for diffusion between spine and dend.






	
diffScale

	unsigned int,double (lookup field)      Geometry term to set diffusion scaling: diffScale[ voxel# ] Here the scaling term is given by cross-section area/length Relevant for diffusion between spine head and dend, or PSD.













          

      

      

    

  

    
      
          
            
  
Enz


	
class Enz

	
	
setKmK1()

	(destination message field)      Low-level function used when you wish to explicitly set Km and k1, without doing any of the volume calculations.Needed by ReadKkit and other situations where the numbers must be set before all the messaging is in place.Not relevant for zombie enzymes.













          

      

      

    

  

    
      
          
            
  
EnzBase


	
class EnzBase

	Abstract base class for enzymes.


	
sub

	void (shared message field)      Connects to substrate molecule






	
prd

	void (shared message field)      Connects to product molecule






	
proc

	void (shared message field)      Shared message for process and reinit






	
setKm()

	(destination message field)      Assigns field value.






	
getKm()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNumKm()

	(destination message field)      Assigns field value.






	
getNumKm()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setKcat()

	(destination message field)      Assigns field value.






	
getKcat()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumSubstrates()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
enzDest()

	(destination message field)      Handles # of molecules of Enzyme






	
subDest()

	(destination message field)      Handles # of molecules of substrate






	
prdDest()

	(destination message field)      Handles # of molecules of product. Dummy.






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
remesh()

	(destination message field)      Tells the MMEnz to recompute its numKm after remeshing






	
subOut

	double,double (source message field)      Sends out increment of molecules on product each timestep






	
prdOut

	double,double (source message field)      Sends out increment of molecules on product each timestep






	
Km

	double (value field)      Michaelis-Menten constant in SI conc units (milliMolar)






	
numKm

	double (value field)      Michaelis-Menten constant in number units, volume dependent






	
kcat

	double (value field)      Forward rate constant for enzyme, units 1/sec






	
numSubstrates

	unsigned int (value field)      Number of substrates in this MM reaction. Usually 1.Does not include the enzyme itself













          

      

      

    

  

    
      
          
            
  
ExIF


	
class ExIF

	Leaky Integrate-and-Fire neuron with Exponential spike rise.Rm*Cm dVm/dt = -(Vm-Em) + deltaThresh * exp((Vm-thresh)/deltaThresh) + Rm*I


	
setDeltaThresh()

	(destination message field)      Assigns field value.






	
getDeltaThresh()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setVPeak()

	(destination message field)      Assigns field value.






	
getVPeak()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
deltaThresh

	double (value field)      Parameter in Vm evolution equation:Rm*Cm * dVm/dt = -(Vm-Em) + deltaThresh * exp((Vm-thresh)/deltaThresh) + Rm*I






	
vPeak

	double (value field)      Vm is reset on reaching vPeak, different from spike thresh below:Rm*Cm dVm/dt = -(Vm-Em) + deltaThresh * exp((Vm-thresh)/deltaThresh) + Rm*I













          

      

      

    

  

    
      
          
            
  
ExponentialRng


	
class ExponentialRng

	Exponentially distributed random number generator.
Exponential distribution with mean k is defined by the probability density function p(x; k) = k * exp(-k * x) if x >= 0, else 0. By default this class uses the random minimization method described in Knuth’s TAOCP Vol II Sec 3.4.1 (Algorithm S).


	
setMean()

	(destination message field)      Assigns field value.






	
getMean()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setMethod()

	(destination message field)      Assigns field value.






	
getMethod()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
mean

	double (value field)      Mean of the exponential distribution.






	
method

	int (value field)      The algorithm to use for computing the sample. Two methods are supported: 0 - logarithmic and 1 - random minimization. The logarithmic method is slower (it computes a logarithm). Default is random minimization. See Knuth, Vol II Sec 3.4.1 : Algorithm S.













          

      

      

    

  

    
      
          
            
  
Finfo


	
class Finfo

	
	
getFieldName()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getDocs()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getType()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getSrc()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getDest()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
fieldName

	string (value field)      Name of field handled by Finfo






	
docs

	string (value field)      Documentation for Finfo






	
type

	string (value field)      RTTI type info for this Finfo






	
src

	vector<string> (value field)      Subsidiary SrcFinfos. Useful for SharedFinfos






	
dest

	vector<string> (value field)      Subsidiary DestFinfos. Useful for SharedFinfos













          

      

      

    

  

    
      
          
            
  
Func


	
class Func

	Func: general purpose function calculator using real numbers. It can
parse mathematical expression defining a function and evaluate it
and/or its derivative for specified variable values.
The variables can be input from other moose objects. In case of
arbitrary variable names, the source message must have the variable
name as the first argument. For most common cases, input messages to
set x, y, z and xy, xyz are made available without such
requirement. This class handles only real numbers
(C-double). Predefined constants are: pi=3.141592…,
e=2.718281…


	
proc

	void (shared message field)      This is a shared message to receive Process messages from the scheduler objects.The first entry in the shared msg is a MsgDest for the Process operation. It has a single argument, ProcInfo, which holds lots of information about current time, thread, dt and so on. The second entry is a MsgDest for the Reinit operation. It also uses ProcInfo.






	
getValue()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getDerivative()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setMode()

	(destination message field)      Assigns field value.






	
getMode()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setExpr()

	(destination message field)      Assigns field value.






	
getExpr()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setVar()

	(destination message field)      Assigns field value.






	
getVar()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getVars()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setX()

	(destination message field)      Assigns field value.






	
getX()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setY()

	(destination message field)      Assigns field value.






	
getY()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setZ()

	(destination message field)      Assigns field value.






	
getZ()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
varIn()

	(destination message field)      Handle value for specified variable coming from other objects






	
xIn()

	(destination message field)      Handle value for variable named x. This is a shorthand. If the
expression does not have any variable named x, this the first variable
in the sequence vars.






	
yIn()

	
	(destination message field)      Handle value for variable named y. This is a utility for two/three

	variable functions where the y value comes from a source separate
from that of x. This is a shorthand. If the





expression does not have any variable named y, this the second
variable in the sequence vars.






	
zIn()

	
	(destination message field)      Handle value for variable named z. This is a utility for three

	variable functions where the z value comes from a source separate
from that of x or y. This is a shorthand. If the expression does not
have any variable named y, this the second variable in the sequence vars.










	
xyIn()

	(destination message field)      Handle value for variables x and y for two-variable function






	
xyzIn()

	(destination message field)      Handle value for variables x, y and z for three-variable function






	
process()

	(destination message field)      Handles process call, updates internal time stamp.






	
reinit()

	(destination message field)      Handles reinit call.






	
valueOut

	double (source message field)      Evaluated value of the function for the current variable values.






	
derivativeOut

	double (source message field)      Value of derivative of the function for the current variable values






	
value

	double (value field)      Result of the function evaluation with current variable values.






	
derivative

	double (value field)      Derivative of the function at given variable values.






	
mode

	
	unsigned int (value field)      Mode of operation:

	1: only the function value will be calculated
2: only the derivative will be calculated
3: both function value and derivative at current variable values will be calculated.










	
expr

	string (value field)      Mathematical expression defining the function. The underlying parser
is muParser. In addition to the available functions and operators  from
muParser, some more functions are added.

Functions
Name        args    explanation
sin         1       sine function
cos         1       cosine function
tan         1       tangens function
asin        1       arcus sine function
acos        1       arcus cosine function
atan        1       arcus tangens function
sinh        1       hyperbolic sine function
cosh        1       hyperbolic cosine
tanh        1       hyperbolic tangens function
asinh       1       hyperbolic arcus sine function
acosh       1       hyperbolic arcus tangens function
atanh       1       hyperbolic arcur tangens function
log2        1       logarithm to the base 2
log10       1       logarithm to the base 10
log         1       logarithm to the base 10
ln          1       logarithm to base e (2.71828…)
exp         1       e raised to the power of x
sqrt        1       square root of a value
sign        1       sign function -1 if x<0; 1 if x>0
rint        1       round to nearest integer
abs         1       absolute value
min         var.    min of all arguments
max         var.    max of all arguments
sum         var.    sum of all arguments
avg         var.    mean value of all arguments
rand        1       rand(seed), random float between 0 and 1,


if seed = -1, then a ‘random’ seed is created.





	rand2       3       rand(a, b, seed), random float between a and b,

	if seed = -1, a ‘random’ seed is created using either
by random_device or by reading system clock





Operators
Op  meaning         prioroty
=   assignement     -1
&&  logical and     1
||  logical or      2
<=  less or equal   4
>=  greater or equal        4
!=  not equal       4
==  equal   4
>   greater than    4
<   less than       4
+   addition        5
-   subtraction     5
*   multiplication  6
/   division        6
^   raise x to the power of y       7

?:  if then else operator   C++ style syntax






	
vars

	vector<string> (value field)      Variable names in the expression






	
x

	double (value field)      Value for variable named x. This is a shorthand. If the
expression does not have any variable named x, this the first variable
in the sequence vars.






	
y

	
	double (value field)      Value for variable named y. This is a utility for two/three

	variable functions where the y value comes from a source separate
from that of x. This is a shorthand. If the





expression does not have any variable named y, this the second
variable in the sequence vars.






	
z

	
	double (value field)      Value for variable named z. This is a utility for three

	variable functions where the z value comes from a source separate
from that of x or z. This is a shorthand. If the expression does not
have any variable named z, this the third variable in the sequence vars.










	
var

	string,double (lookup field)      Lookup table for variable values.













          

      

      

    

  

    
      
          
            
  
Function


	
class Function

	General purpose function calculator using real numbers.
It can parse mathematical expression defining a function and evaluate it and/or its derivative for specified variable values.You can assign expressions of the form::
f(c0, c1, …, cM, x0, x1, …, xN, y0,…, yP )


where ci’s are constants and xi’s and yi’s are variables.The constants must be defined before setting the expression and variables are connected via messages. The constants can have any name, but the variable names must be of the form x{i} or y{i}  where i is increasing integer starting from 0.
The variables can be input from other moose objects. Such variables must be named x{i} in the expression and the source field is connected to Function.x[i]’s input destination field.
In case the input variable is not available as a source field, but is a value field, then the value can be requested by connecting the requestOut message to the get{Field} destination on the target object. Such variables must be specified in the expression as y{i} and connecting the messages should happen in the same order as the y indices.
This class handles only real numbers (C-double). Predefined constants are: pi=3.141592…, e=2.718281…





	
proc

	void (shared message field)      This is a shared message to receive Process messages from the scheduler objects.The first entry in the shared msg is a MsgDest for the Process operation. It has a single argument, ProcInfo, which holds lots of information about current time, thread, dt and so on. The second entry is a MsgDest for the Reinit operation. It also uses ProcInfo.






	
getValue()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getRate()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getDerivative()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setMode()

	(destination message field)      Assigns field value.






	
getMode()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setExpr()

	(destination message field)      Assigns field value.






	
getExpr()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNumVars()

	(destination message field)      Assigns field value.






	
getNumVars()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNumX()

	(destination message field)      Assigns number of field entries in field array.






	
getNumX()

	(destination message field)      Requests number of field entries in field array.The requesting Element must provide a handler for the returned value.






	
setC()

	(destination message field)      Assigns field value.






	
getC()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setIndependent()

	(destination message field)      Assigns field value.






	
getIndependent()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
process()

	(destination message field)      Handles process call, updates internal time stamp.






	
reinit()

	(destination message field)      Handles reinit call.






	
requestOut

	PSt6vectorIdSaIdEE (source message field)      Sends request for input variable from a field on target object






	
valueOut

	double (source message field)      Evaluated value of the function for the current variable values.






	
rateOut

	double (source message field)      Value of time-derivative of the function for the current variable values






	
derivativeOut

	double (source message field)      Value of derivative of the function for the current variable values






	
value

	double (value field)      Result of the function evaluation with current variable values.






	
rate

	double (value field)      Derivative of the function at given variable values. This is computed as the difference of the current and previous value of the function divided by the time step.






	
derivative

	double (value field)      Derivative of the function at given variable values. This is calulated using 5-point stencil  <http://en.wikipedia.org/wiki/Five-point_stencil> at current value of independent variable. Note that unlike hand-calculated derivatives, numerical derivatives are not exact.






	
mode

	
	unsigned int (value field)      Mode of operation:

	1: only the function value will be sent out.
2: only the derivative with respect to the independent variable will be sent out.
3: only rate (time derivative) will be sent out.
anything else: all three, value, derivative and rate will be sent out.










	
expr

	string (value field)      Mathematical expression defining the function. The underlying parser
is muParser. In addition to the available functions and operators  from
muParser, some more functions are added.

Functions
Name        args    explanation
sin         1       sine function
cos         1       cosine function
tan         1       tangens function
asin        1       arcus sine function
acos        1       arcus cosine function
atan        1       arcus tangens function
sinh        1       hyperbolic sine function
cosh        1       hyperbolic cosine
tanh        1       hyperbolic tangens function
asinh       1       hyperbolic arcus sine function
acosh       1       hyperbolic arcus tangens function
atanh       1       hyperbolic arcur tangens function
log2        1       logarithm to the base 2
log10       1       logarithm to the base 10
log         1       logarithm to the base 10
ln  1       logarithm to base e (2.71828…)
exp         1       e raised to the power of x
sqrt        1       square root of a value
sign        1       sign function -1 if x<0; 1 if x>0
rint        1       round to nearest integer
abs         1       absolute value
min         var.    min of all arguments
max         var.    max of all arguments
sum         var.    sum of all arguments
avg         var.    mean value of all arguments
rand        1       rand(seed), random float between 0 and 1,


if seed = -1, then a ‘random’ seed is created.





	rand2       3       rand(a, b, seed), random float between a and b,

	if seed = -1, a ‘random’ seed is created using either
by random_device or by reading system clock





Operators
Op  meaning         priority
=   assignment     -1
&&  logical and     1
||  logical or      2
<=  less or equal   4
>=  greater or equal        4
!=  not equal       4
==  equal   4
>   greater than    4
<   less than       4
+   addition        5
-   subtraction     5
*   multiplication  6
/   division        6
^   raise x to the power of y       7
%   floating point modulo         7

?:  if then else operator   C++ style syntax






	
numVars

	unsigned int (value field)      Number of variables used by Function.






	
independent

	string (value field)      Index of independent variable. Differentiation is done based on this. Defaults to the first assigned variable.






	
c

	string,double (lookup field)      Constants used in the function. These must be assigned before specifying the function expression.










	
class GammaRng

	Gamma distributed random number generator.


	
setAlpha()

	(destination message field)      Assigns field value.






	
getAlpha()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTheta()

	(destination message field)      Assigns field value.






	
getTheta()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
alpha

	double (value field)      Parameter alpha of the gamma distribution.






	
theta

	double (value field)      Parameter theta of the Gamma distribution.













          

      

      

    

  

    
      
          
            
  
GammaRng


	
class GammaRng

	Gamma distributed random number generator.


	
setAlpha()

	(destination message field)      Assigns field value.






	
getAlpha()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTheta()

	(destination message field)      Assigns field value.






	
getTheta()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
alpha

	double (value field)      Parameter alpha of the gamma distribution.






	
theta

	double (value field)      Parameter theta of the Gamma distribution.













          

      

      

    

  

    
      
          
            
  
GapJunction


	
class GapJunction

	Implementation of gap junction between two compartments. The shared
fields, ‘channel1’ and ‘channel2’ can be connected to the ‘channel’
message of the compartments at either end of the gap junction. The
compartments will send their Vm to the gap junction and receive the
conductance ‘Gk’ of the gap junction and the Vm of the other
compartment.


	
channel1

	void (shared message field)      This is a shared message to couple the conductance and Vm from
terminal 2 to the compartment at terminal 1. The first entry is source
sending out Gk and Vm2, the second entry is destination for Vm1.






	
channel2

	void (shared message field)      This is a shared message to couple the conductance and Vm from
terminal 1 to the compartment at terminal 2. The first entry is source
sending out Gk and Vm1, the second entry is destination for Vm2.






	
proc

	void (shared message field)      This is a shared message to receive Process messages from the scheduler objects. The Process should be called _second_ in each clock tick, after the Init message.The first entry in the shared msg is a MsgDest for the Process operation. It has a single argument, ProcInfo, which holds lots of information about current time, thread, dt and so on. The second entry is a MsgDest for the Reinit operation. It also uses ProcInfo.






	
Vm1()

	(destination message field)      Handles Vm message from compartment






	
Vm2()

	(destination message field)      Handles Vm message from another compartment






	
setGk()

	(destination message field)      Assigns field value.






	
getGk()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
process()

	(destination message field)      Handles ‘process’ call






	
reinit()

	(destination message field)      Handles ‘reinit’ call






	
channel1Out

	double,double (source message field)      Sends Gk and Vm from one compartment to the other






	
channel2Out

	double,double (source message field)      Sends Gk and Vm from one compartment to the other






	
Gk

	double (value field)      Conductance of the gap junction













          

      

      

    

  

    
      
          
            
  
GraupnerBrunel2012CaPlasticitySynHandler


	
class GraupnerBrunel2012CaPlasticitySynHandler

	The GraupnerBrunel2012CaPlasticitySynHandler handles synapseswith Ca-based plasticity as per Higgins et al. 2014 and Graupner and Brunel 2012.Note 1:   Here, Ca (‘chemical Ca’) is updated only at each pre-spike, pre-spike+delayD and post-spike!   So it is inaccurate to use it for say Ca-dependent K channels in the electrical compartment,   for which you use are advised to use the CaPool i.e. ‘electrical Ca’.Note 2:   Ca here is post-synaptic ‘chemical Ca’ common for all synapses in this SynHandler,   so weights of all pre-synapses connected to this SynHandler get updated   at each pre-spike, pre-spike+delayD and post-spike!   So if all pre-synaptic weights start out the same, they remain the same!!   If you want to consider each pre-synapse independently,   have independent SynHandlers for each synapse.   If these SynHandlers are in the same electrical compartment,   you’re essentially assuming these are on different spines,   with their own ‘chemical Ca’ which won’t match the   ‘electrical Ca’ of the compartment (=dendrite).   If you put each SynHandler with a single synapse   in its own electrical compartment (=spine),   only then can you have an ‘electrical Ca’   corresponding to the ‘chemical Ca’.Three priority queues are used to manage pre, post, and pre+delayD spikes.


	
setNumSynapse()

	(destination message field)      Assigns number of field entries in field array.






	
getNumSynapse()

	(destination message field)      Requests number of field entries in field array.The requesting Element must provide a handler for the returned value.






	
addPostSpike()

	(destination message field)      Handles arriving spike messages from post-synaptic neuron, inserts into postEvent queue.






	
setCa()

	(destination message field)      Assigns field value.






	
getCa()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCaInit()

	(destination message field)      Assigns field value.






	
getCaInit()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTauCa()

	(destination message field)      Assigns field value.






	
getTauCa()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTauSyn()

	(destination message field)      Assigns field value.






	
getTauSyn()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCaPre()

	(destination message field)      Assigns field value.






	
getCaPre()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCaPost()

	(destination message field)      Assigns field value.






	
getCaPost()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDelayD()

	(destination message field)      Assigns field value.






	
getDelayD()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setThetaP()

	(destination message field)      Assigns field value.






	
getThetaP()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setThetaD()

	(destination message field)      Assigns field value.






	
getThetaD()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setGammaP()

	(destination message field)      Assigns field value.






	
getGammaP()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setGammaD()

	(destination message field)      Assigns field value.






	
getGammaD()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setWeightMax()

	(destination message field)      Assigns field value.






	
getWeightMax()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setWeightMin()

	(destination message field)      Assigns field value.






	
getWeightMin()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setWeightScale()

	(destination message field)      Assigns field value.






	
getWeightScale()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNoisy()

	(destination message field)      Assigns field value.






	
getNoisy()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNoiseSD()

	(destination message field)      Assigns field value.






	
getNoiseSD()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setBistable()

	(destination message field)      Assigns field value.






	
getBistable()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
Ca

	double (value field)      Ca is a post-synaptic decaying variable as a proxy for Ca concentrationand receives an impulse whenever a pre- or post- spike occurs.Caution: Ca is updated via an event-based rule, so it is only updated and validwhen a pre- or post- spike has occured, or at time delayD after a pre-spike.Do not use it to control a Ca dependent current, etc.See notes in the class Description: all pre-synapses get updated via the same post-synaptic Ca.






	
CaInit

	double (value field)      CaInit is the initial value for Ca






	
tauCa

	double (value field)      tauCa is the time constant for decay of Ca






	
tauSyn

	double (value field)      tauSyn is the time constant for synaptic weight evolution equation






	
CaPre

	double (value field)      CaPre is added to Ca on every pre-spike






	
CaPost

	double (value field)      CaPost is added to Ca on every post-spike






	
delayD

	double (value field)      Time delay D after pre-spike, when Ca is increased by Capre. delayD represents NMDA rise time.






	
thetaP

	double (value field)      Potentiation threshold for CaUser must ensure thetaP>thetaD, else simulation results will be wrong.






	
thetaD

	double (value field)      Depression threshold for CaUser must ensure thetaP>thetaD, else simulation results will be wrong.






	
gammaP

	double (value field)      gammaP is the potentiation factor for synaptic weight increase if Ca>thetaP






	
gammaD

	double (value field)      gammaD is the depression factor for synaptic weight decrease if Ca>thetaD






	
weightMax

	double (value field)      An upper bound on the weight






	
weightMin

	double (value field)      A lower bound on the weight






	
weightScale

	double (value field)      Scale all pre-synaptic weights by weightScale before adding to activation (default 1.0)In the terminology of the paper Higgins et al 2012, weight is synaptic efficacy,while weightScale*weight is what finally is added to activation variable.






	
noisy

	bool (value field)      If true, turn noise on as per noiseSD






	
noiseSD

	double (value field)      Standard deviation of noise added to Ca






	
bistable

	bool (value field)      If true, the synapse is bistable as in GraupnerBrunel2012 paper.The effect of potential on the weight update is usually ignorable if Ca is above thetaP and thetaD most of the time.













          

      

      

    

  

    
      
          
            
  
Group


	
class Group

	
	
group

	void (source message field)      Handle for grouping Elements













          

      

      

    

  

    
      
          
            
  
Gsolve


	
class Gsolve

	
	
proc

	void (shared message field)      Shared message for process and reinit






	
init

	void (shared message field)      Shared message for initProc and initReinit. This is used when the system has cross-compartment reactions.






	
xCompt

	void (shared message field)      Shared message for pool exchange for cross-compartment reactions. Exchanges latest values of all pools that participate in such reactions.






	
setStoich()

	(destination message field)      Assigns field value.






	
getStoich()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumLocalVoxels()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNVec()

	(destination message field)      Assigns field value.






	
getNVec()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNumAllVoxels()

	(destination message field)      Assigns field value.






	
getNumAllVoxels()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNumPools()

	(destination message field)      Assigns field value.






	
getNumPools()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
voxelVol()

	(destination message field)      Handles updates to all voxels. Comes from parent ChemCompt object.






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
initProc()

	(destination message field)      Handles initProc call from Clock






	
initReinit()

	(destination message field)      Handles initReinit call from Clock






	
xComptIn()

	(destination message field)      Handles arriving pool ‘n’ values used in cross-compartment reactions.






	
setUseRandInit()

	(destination message field)      Assigns field value.






	
getUseRandInit()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setUseClockedUpdate()

	(destination message field)      Assigns field value.






	
getUseClockedUpdate()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumFire()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
xComptOut

	Id,vector<double> (source message field)      Sends ‘n’ of all molecules participating in cross-compartment reactions between any juxtaposed voxels between current compt and another compartment. This includes molecules local to this compartment, as well as proxy molecules belonging elsewhere. A(t+1) = (Alocal(t+1) + AremoteProxy(t+1)) - Alocal(t) A(t+1) = (Aremote(t+1) + Aproxy(t+1)) - Aproxy(t) Then we update A on the respective solvers with: Alocal(t+1) = Aproxy(t+1) = A(t+1) This is equivalent to sending dA over on each timestep.






	
stoich

	Id (value field)      Stoichiometry object for handling this reaction system.






	
numLocalVoxels

	unsigned int (value field)      Number of voxels in the core reac-diff system, on the current solver.






	
numAllVoxels

	unsigned int (value field)      Number of voxels in the entire reac-diff system, including proxy voxels to represent abutting compartments.






	
numPools

	unsigned int (value field)      Number of molecular pools in the entire reac-diff system, including variable, function and buffered.






	
useRandInit

	
	bool (value field)      Flag: True when using probabilistic (random) rounding.

	Default: True.
When initializing the mol# from floating-point Sinit values, we have two options. One is to look at each Sinit, and round to the nearest integer. The other is to look at each Sinit, and probabilistically round up or down depending on the  value. For example, if we had a Sinit value of 1.49,  this would always be rounded to 1.0 if the flag is false, and would be rounded to 1.0 and 2.0 in the ratio 51:49 if the flag is true.










	
useClockedUpdate

	bool (value field)      Flag: True to cause all reaction propensities to be updated on every clock tick.
Default: False.
This flag should be set when the reaction system includes a function with a dependency on time or on external events. It has a significant speed penalty so the flag should not be set unless there are such functions.






	
nVec

	unsigned int,vector<double> (lookup field)      vector of pool counts






	
numFire

	unsigned int,vector<unsigned int> (lookup field)      Vector of the number of times each reaction has fired.Indexed by the voxel number.Zeroed out at reinit.













          

      

      

    

  

    
      
          
            
  
HDF5DataWriter


	
class HDF5DataWriter

	HDF5 file writer for saving field values from multiple objects.
Connect the requestOut field of this object to the get{Fieldname} of other objects where fieldname is the target value field of type double. The HDF5DataWriter collects the current values of the fields in all the targets at each time step in a local buffer. When the buffer size exceeds flushLimit (default 4M), it will write the data into the HDF5 file specified in its filename field (default moose_output.h5). You can explicitly force writing by calling the flush function.
The dataset location in the output file replicates the MOOSE element tree structure. Thus, if you record the Vm field from /model[0]/neuron[0]/soma[0], the dataset path will be `/model[0]/neuron[0]/soma[0]/vm
NOTE: The output file remains open until this object is destroyed, or close() is called explicitly.


	
proc

	void (shared message field)      Shared message to receive process and reinit






	
setFlushLimit()

	(destination message field)      Assigns field value.






	
getFlushLimit()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
process()

	(destination message field)      Handle process calls. Gets data from connected fields into a local buffer and dumps them to filename if the buffer length exceeds flushLimit






	
reinit()

	(destination message field)      Reinitialize the object. If the current file handle is valid, it tries to close that and open the file specified in current filename field.






	
requestOut

	PSt6vectorIdSaIdEE (source message field)      Sends request for a field to target object






	
flushLimit

	unsigned int (value field)      Buffer size limit for flushing the data from memory to file. Default is 4M doubles.













          

      

      

    

  

    
      
          
            
  
HDF5WriterBase


	
class HDF5WriterBase

	HDF5 file writer base class. This is not to be used directly. Instead, it should be subclassed to provide specific data writing functions. This class provides most basic properties like filename, file opening mode, file open status.


	
setFilename()

	(destination message field)      Assigns field value.






	
getFilename()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getIsOpen()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setMode()

	(destination message field)      Assigns field value.






	
getMode()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setChunkSize()

	(destination message field)      Assigns field value.






	
getChunkSize()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCompressor()

	(destination message field)      Assigns field value.






	
getCompressor()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCompression()

	(destination message field)      Assigns field value.






	
getCompression()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setStringAttr()

	(destination message field)      Assigns field value.






	
getStringAttr()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDoubleAttr()

	(destination message field)      Assigns field value.






	
getDoubleAttr()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setLongAttr()

	(destination message field)      Assigns field value.






	
getLongAttr()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setStringVecAttr()

	(destination message field)      Assigns field value.






	
getStringVecAttr()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDoubleVecAttr()

	(destination message field)      Assigns field value.






	
getDoubleVecAttr()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setLongVecAttr()

	(destination message field)      Assigns field value.






	
getLongVecAttr()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
flush()

	(destination message field)      Write all buffer contents to file and clear the buffers.






	
close()

	(destination message field)      Close the underlying file. This is a safety measure so that file is not in an invalid state even if a crash happens at exit.






	
filename

	string (value field)      Name of the file associated with this HDF5 writer object.






	
isOpen

	bool (value field)      True if this object has an open file handle.






	
mode

	unsigned int (value field)      Depending on mode, if file already exists, if mode=1, data will be appended to existing file, if mode=2, file will be truncated, if  mode=4, no writing will happen.






	
chunkSize

	unsigned int (value field)      Chunksize for writing array data. Defaults to 100.






	
compressor

	string (value field)      Compression type for array data. zlib and szip are supported. Defaults to zlib.






	
compression

	unsigned int (value field)      Compression level for array data. Defaults to 6.






	
stringAttr

	string,string (lookup field)      String attributes. The key is attribute name, value is attribute value (string).






	
doubleAttr

	string,double (lookup field)      Double precision floating point attributes. The key is attribute name, value is attribute value (double).






	
longAttr

	string,long (lookup field)      Long integer attributes. The key is attribute name, value is attribute value (long).






	
stringVecAttr

	string,vector<string> (lookup field)      String vector attributes. The key is attribute name, value is attribute value (string).






	
doubleVecAttr

	string,vector<double> (lookup field)      Double vector attributes. The key is attribute name, value is attribute value (vector of double).






	
longVecAttr

	string,vector<long> (lookup field)      Long integer vector attributes. The key is attribute name, value is attribute value (vector of long).













          

      

      

    

  

    
      
          
            
  
HHChannel


	
class HHChannel

	HHChannel: Hodgkin-Huxley type voltage-gated Ion channel. Something like the old tabchannel from GENESIS, but also presents a similar interface as hhchan from GENESIS.









          

      

      

    

  

    
      
          
            
  
HHChannel2D


	
class HHChannel2D

	HHChannel2D: Hodgkin-Huxley type voltage-gated Ion channel. Something like the old tabchannel from GENESIS, but also presents a similar interface as hhchan from GENESIS.


	
setXindex()

	(destination message field)      Assigns field value.






	
getXindex()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setYindex()

	(destination message field)      Assigns field value.






	
getYindex()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setZindex()

	(destination message field)      Assigns field value.






	
getZindex()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setXpower()

	(destination message field)      Assigns field value.






	
getXpower()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setYpower()

	(destination message field)      Assigns field value.






	
getYpower()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setZpower()

	(destination message field)      Assigns field value.






	
getZpower()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setInstant()

	(destination message field)      Assigns field value.






	
getInstant()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setX()

	(destination message field)      Assigns field value.






	
getX()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setY()

	(destination message field)      Assigns field value.






	
getY()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setZ()

	(destination message field)      Assigns field value.






	
getZ()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
concen()

	(destination message field)      Incoming message from Concen object to specific conc to useas the first concen variable






	
concen2()

	(destination message field)      Incoming message from Concen object to specific conc to useas the second concen variable






	
setNumGateX()

	(destination message field)      Assigns number of field entries in field array.






	
getNumGateX()

	(destination message field)      Requests number of field entries in field array.The requesting Element must provide a handler for the returned value.






	
setNumGateY()

	(destination message field)      Assigns number of field entries in field array.






	
getNumGateY()

	(destination message field)      Requests number of field entries in field array.The requesting Element must provide a handler for the returned value.






	
setNumGateZ()

	(destination message field)      Assigns number of field entries in field array.






	
getNumGateZ()

	(destination message field)      Requests number of field entries in field array.The requesting Element must provide a handler for the returned value.






	
Xindex

	string (value field)      String for setting X index.






	
Yindex

	string (value field)      String for setting Y index.






	
Zindex

	string (value field)      String for setting Z index.






	
Xpower

	double (value field)      Power for X gate






	
Ypower

	double (value field)      Power for Y gate






	
Zpower

	double (value field)      Power for Z gate






	
instant

	int (value field)      Bitmapped flag: bit 0 = Xgate, bit 1 = Ygate, bit 2 = ZgateWhen true, specifies that the lookup table value should beused directly as the state of the channel, rather than usedas a rate term for numerical integration for the state






	
X

	double (value field)      State variable for X gate






	
Y

	double (value field)      State variable for Y gate






	
Z

	double (value field)      State variable for Y gate













          

      

      

    

  

    
      
          
            
  
HHChannelBase


	
class HHChannelBase

	HHChannelBase: Base class for Hodgkin-Huxley type voltage-gated Ion channels. Something like the old tabchannel from GENESIS, but also presents a similar interface as hhchan from GENESIS.


	
setXpower()

	(destination message field)      Assigns field value.






	
getXpower()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setYpower()

	(destination message field)      Assigns field value.






	
getYpower()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setZpower()

	(destination message field)      Assigns field value.






	
getZpower()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setInstant()

	(destination message field)      Assigns field value.






	
getInstant()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setX()

	(destination message field)      Assigns field value.






	
getX()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setY()

	(destination message field)      Assigns field value.






	
getY()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setZ()

	(destination message field)      Assigns field value.






	
getZ()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setUseConcentration()

	(destination message field)      Assigns field value.






	
getUseConcentration()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
concen()

	(destination message field)      Incoming message from Concen object to specific conc to usein the Z gate calculations






	
createGate()

	(destination message field)      Function to create specified gate.Argument: Gate type [X Y Z]






	
setNumGateX()

	(destination message field)      Assigns number of field entries in field array.






	
getNumGateX()

	(destination message field)      Requests number of field entries in field array.The requesting Element must provide a handler for the returned value.






	
setNumGateY()

	(destination message field)      Assigns number of field entries in field array.






	
getNumGateY()

	(destination message field)      Requests number of field entries in field array.The requesting Element must provide a handler for the returned value.






	
setNumGateZ()

	(destination message field)      Assigns number of field entries in field array.






	
getNumGateZ()

	(destination message field)      Requests number of field entries in field array.The requesting Element must provide a handler for the returned value.






	
Xpower

	double (value field)      Power for X gate






	
Ypower

	double (value field)      Power for Y gate






	
Zpower

	double (value field)      Power for Z gate






	
instant

	int (value field)      Bitmapped flag: bit 0 = Xgate, bit 1 = Ygate, bit 2 = ZgateWhen true, specifies that the lookup table value should beused directly as the state of the channel, rather than usedas a rate term for numerical integration for the state






	
X

	double (value field)      State variable for X gate






	
Y

	double (value field)      State variable for Y gate






	
Z

	double (value field)      State variable for Y gate






	
useConcentration

	int (value field)      Flag: when true, use concentration message rather than Vm tocontrol Z gate













          

      

      

    

  

    
      
          
            
  
HHGate


	
class HHGate

	HHGate: Gate for Hodkgin-Huxley type channels, equivalent to the m and h terms on the Na squid channel and the n term on K. This takes the voltage and state variable from the channel, computes the new value of the state variable and a scaling, depending on gate power, for the conductance.


	
getA()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getB()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setAlpha()

	(destination message field)      Assigns field value.






	
getAlpha()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setBeta()

	(destination message field)      Assigns field value.






	
getBeta()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTau()

	(destination message field)      Assigns field value.






	
getTau()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setMInfinity()

	(destination message field)      Assigns field value.






	
getMInfinity()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setMin()

	(destination message field)      Assigns field value.






	
getMin()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setMax()

	(destination message field)      Assigns field value.






	
getMax()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDivs()

	(destination message field)      Assigns field value.






	
getDivs()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTableA()

	(destination message field)      Assigns field value.






	
getTableA()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTableB()

	(destination message field)      Assigns field value.






	
getTableB()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setUseInterpolation()

	(destination message field)      Assigns field value.






	
getUseInterpolation()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setAlphaParms()

	(destination message field)      Assigns field value.






	
getAlphaParms()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setupAlpha()

	(destination message field)      Set up both gates using 13 parameters, as follows:setupAlpha AA AB AC AD AF BA BB BC BD BF xdivs xmin xmaxHere AA-AF are Coefficients A to F of the alpha (forward) termHere BA-BF are Coefficients A to F of the beta (reverse) termHere xdivs is the number of entries in the table,xmin and xmax define the range for lookup.Outside this range the returned value will be the low [high]entry of the table.The equation describing each table is:y(x) = (A + B * x) / (C + exp((x + D) / F))The original HH equations can readily be cast into this form






	
setupTau()

	(destination message field)      Identical to setupAlpha, except that the forms specified bythe 13 parameters are for the tau and m-infinity curves ratherthan the alpha and beta terms. So the parameters are:setupTau TA TB TC TD TF MA MB MC MD MF xdivs xmin xmaxAs before, the equation describing each curve is:y(x) = (A + B * x) / (C + exp((x + D) / F))






	
tweakAlpha()

	(destination message field)      Dummy function for backward compatibility. It used to convertthe tables from alpha, beta values to alpha, alpha+betabecause the internal calculations used these forms. Notneeded now, deprecated.






	
tweakTau()

	(destination message field)      Dummy function for backward compatibility. It used to convertthe tables from tau, minf values to alpha, alpha+betabecause the internal calculations used these forms. Notneeded now, deprecated.






	
setupGate()

	(destination message field)      Sets up one gate at a time using the alpha/beta form.Has 9 parameters, as follows:setupGate A B C D F xdivs xmin xmax is_betaThis sets up the gate using the equation:y(x) = (A + B * x) / (C + exp((x + D) / F))Deprecated.






	
alpha

	vector<double> (value field)      Parameters for voltage-dependent rates, alpha:Set up alpha term using 5 parameters, as follows:y(x) = (A + B * x) / (C + exp((x + D) / F))The original HH equations can readily be cast into this form






	
beta

	vector<double> (value field)      Parameters for voltage-dependent rates, beta:Set up beta term using 5 parameters, as follows:y(x) = (A + B * x) / (C + exp((x + D) / F))The original HH equations can readily be cast into this form






	
tau

	vector<double> (value field)      Parameters for voltage-dependent rates, tau:Set up tau curve using 5 parameters, as follows:y(x) = (A + B * x) / (C + exp((x + D) / F))






	
mInfinity

	vector<double> (value field)      Parameters for voltage-dependent rates, mInfinity:Set up mInfinity curve using 5 parameters, as follows:y(x) = (A + B * x) / (C + exp((x + D) / F))The original HH equations can readily be cast into this form






	
min

	double (value field)      Minimum range for lookup






	
max

	double (value field)      Minimum range for lookup






	
divs

	unsigned int (value field)      Divisions for lookup. Zero means to use linear interpolation






	
tableA

	vector<double> (value field)      Table of A entries






	
tableB

	vector<double> (value field)      Table of alpha + beta entries






	
useInterpolation

	bool (value field)      Flag: use linear interpolation if true, else direct lookup






	
alphaParms

	vector<double> (value field)      Set up both gates using 13 parameters, as follows:setupAlpha AA AB AC AD AF BA BB BC BD BF xdivs xmin xmaxHere AA-AF are Coefficients A to F of the alpha (forward) termHere BA-BF are Coefficients A to F of the beta (reverse) termHere xdivs is the number of entries in the table,xmin and xmax define the range for lookup.Outside this range the returned value will be the low [high]entry of the table.The equation describing each table is:y(x) = (A + B * x) / (C + exp((x + D) / F))The original HH equations can readily be cast into this form






	
A

	double,double (lookup field)      lookupA: Look up the A gate value from a double. Usually doesso by direct scaling and offset to an integer lookup, usinga fine enough table granularity that there is little error.Alternatively uses linear interpolation.The range of the double is predefined based on knowledge ofvoltage or conc ranges, and the granularity is specified bythe xmin, xmax, and dV fields.






	
B

	double,double (lookup field)      lookupB: Look up the B gate value from a double.Note that this looks up the raw tables, which are transformedfrom the reference parameters.













          

      

      

    

  

    
      
          
            
  
HHGate2D


	
class HHGate2D

	HHGate2D: Gate for Hodkgin-Huxley type channels, equivalent to the m and h terms on the Na squid channel and the n term on K. This takes the voltage and state variable from the channel, computes the new value of the state variable and a scaling, depending on gate power, for the conductance. These two terms are sent right back in a message to the channel.


	
getA()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getB()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTableA()

	(destination message field)      Assigns field value.






	
getTableA()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTableB()

	(destination message field)      Assigns field value.






	
getTableB()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setXminA()

	(destination message field)      Assigns field value.






	
getXminA()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setXmaxA()

	(destination message field)      Assigns field value.






	
getXmaxA()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setXdivsA()

	(destination message field)      Assigns field value.






	
getXdivsA()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setYminA()

	(destination message field)      Assigns field value.






	
getYminA()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setYmaxA()

	(destination message field)      Assigns field value.






	
getYmaxA()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setYdivsA()

	(destination message field)      Assigns field value.






	
getYdivsA()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setXminB()

	(destination message field)      Assigns field value.






	
getXminB()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setXmaxB()

	(destination message field)      Assigns field value.






	
getXmaxB()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setXdivsB()

	(destination message field)      Assigns field value.






	
getXdivsB()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setYminB()

	(destination message field)      Assigns field value.






	
getYminB()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setYmaxB()

	(destination message field)      Assigns field value.






	
getYmaxB()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setYdivsB()

	(destination message field)      Assigns field value.






	
getYdivsB()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
tableA

	vector< vector<double> > (value field)      Table of A entries






	
tableB

	vector< vector<double> > (value field)      Table of B entries






	
xminA

	double (value field)      Minimum range for lookup






	
xmaxA

	double (value field)      Minimum range for lookup






	
xdivsA

	unsigned int (value field)      Divisions for lookup. Zero means to use linear interpolation






	
yminA

	double (value field)      Minimum range for lookup






	
ymaxA

	double (value field)      Minimum range for lookup






	
ydivsA

	unsigned int (value field)      Divisions for lookup. Zero means to use linear interpolation






	
xminB

	double (value field)      Minimum range for lookup






	
xmaxB

	double (value field)      Minimum range for lookup






	
xdivsB

	unsigned int (value field)      Divisions for lookup. Zero means to use linear interpolation






	
yminB

	double (value field)      Minimum range for lookup






	
ymaxB

	double (value field)      Minimum range for lookup






	
ydivsB

	unsigned int (value field)      Divisions for lookup. Zero means to use linear interpolation






	
A

	vector<double>,double (lookup field)      lookupA: Look up the A gate value from two doubles, passedin as a vector. Uses linear interpolation in the 2D tableThe range of the lookup doubles is predefined based on knowledge of voltage or conc ranges, and the granularity is specified by the xmin, xmax, and dx field, and their y-axis counterparts.






	
B

	vector<double>,double (lookup field)      lookupB: Look up B gate value from two doubles in a vector.













          

      

      

    

  

    
      
          
            
  
HSolve


	
class HSolve

	HSolve: Hines solver, for solving branching neuron models.


	
proc

	void (shared message field)      Handles ‘reinit’ and ‘process’ calls from a clock.






	
setSeed()

	(destination message field)      Assigns field value.






	
getSeed()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTarget()

	(destination message field)      Assigns field value.






	
getTarget()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDt()

	(destination message field)      Assigns field value.






	
getDt()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCaAdvance()

	(destination message field)      Assigns field value.






	
getCaAdvance()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setVDiv()

	(destination message field)      Assigns field value.






	
getVDiv()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setVMin()

	(destination message field)      Assigns field value.






	
getVMin()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setVMax()

	(destination message field)      Assigns field value.






	
getVMax()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCaDiv()

	(destination message field)      Assigns field value.






	
getCaDiv()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCaMin()

	(destination message field)      Assigns field value.






	
getCaMin()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCaMax()

	(destination message field)      Assigns field value.






	
getCaMax()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
process()

	(destination message field)      Handles ‘process’ call: Solver advances by one time-step.






	
reinit()

	(destination message field)      Handles ‘reinit’ call: Solver reads in model.






	
seed

	Id (value field)      Use this field to specify path to a ‘seed’ compartment, that is, any compartment within a neuron. The HSolve object uses this seed as a handle to discover the rest of the neuronal model, which means all the remaining compartments, channels, synapses, etc.






	
target

	string (value field)      Specifies the path to a compartmental model to be taken over. This can be the path to any container object that has the model under it (found by performing a deep search). Alternatively, this can also be the path to any compartment within the neuron. This compartment will be used as a handle to discover the rest of the model, which means all the remaining compartments, channels, synapses, etc.






	
dt

	double (value field)      The time-step for this solver.






	
caAdvance

	int (value field)      This flag determines how current flowing into a calcium pool is computed. A value of 0 means that the membrane potential at the beginning of the time-step is used for the calculation. This is how GENESIS does its computations. A value of 1 means the membrane potential at the middle of the time-step is used. This is the correct way of integration, and is the default way.






	
vDiv

	int (value field)      Specifies number of divisions for lookup tables of voltage-sensitive channels.






	
vMin

	double (value field)      Specifies the lower bound for lookup tables of voltage-sensitive channels. Default is to automatically decide based on the tables of the channels that the solver reads in.






	
vMax

	double (value field)      Specifies the upper bound for lookup tables of voltage-sensitive channels. Default is to automatically decide based on the tables of the channels that the solver reads in.






	
caDiv

	int (value field)      Specifies number of divisions for lookup tables of calcium-sensitive channels.






	
caMin

	double (value field)      Specifies the lower bound for lookup tables of calcium-sensitive channels. Default is to automatically decide based on the tables of the channels that the solver reads in.






	
caMax

	double (value field)      Specifies the upper bound for lookup tables of calcium-sensitive channels. Default is to automatically decide based on the tables of the channels that the solver reads in.













          

      

      

    

  

    
      
          
            
  
InputVariable


	
class InputVariable

	Variable for capturing incoming values and updating them in owner object.


	
input()

	(destination message field)      Handles input message, inserts into variable queue on owner.













          

      

      

    

  

    
      
          
            
  
IntFire


	
class IntFire

	
	
proc

	void (shared message field)      Shared message for process and reinit






	
setVm()

	(destination message field)      Assigns field value.






	
getVm()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTau()

	(destination message field)      Assigns field value.






	
getTau()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setThresh()

	(destination message field)      Assigns field value.






	
getThresh()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setRefractoryPeriod()

	(destination message field)      Assigns field value.






	
getRefractoryPeriod()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
activation()

	(destination message field)      Handles value of synaptic activation arriving on this IntFire






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
spikeOut

	double (source message field)      Sends out spike events. The argument is the timestamp of the spike.






	
Vm

	double (value field)      Membrane potential






	
tau

	double (value field)      charging time-course






	
thresh

	double (value field)      firing threshold






	
refractoryPeriod

	double (value field)      Minimum time between successive spikes













          

      

      

    

  

    
      
          
            
  
IntFireBase


	
class IntFireBase

	Base class for Integrate-and-fire compartment.


	
setThresh()

	(destination message field)      Assigns field value.






	
getThresh()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setVReset()

	(destination message field)      Assigns field value.






	
getVReset()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setRefractoryPeriod()

	(destination message field)      Assigns field value.






	
getRefractoryPeriod()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getHasFired()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getLastEventTime()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
activation()

	(destination message field)      Handles value of synaptic activation arriving on this object






	
spikeOut

	double (source message field)      Sends out spike events. The argument is the timestamp of the spike.






	
thresh

	double (value field)      firing threshold






	
vReset

	double (value field)      voltage is set to vReset after firing






	
refractoryPeriod

	double (value field)      Minimum time between successive spikes






	
hasFired

	bool (value field)      The object has fired within the last timestep






	
lastEventTime

	double (value field)      Timestamp of last firing.













          

      

      

    

  

    
      
          
            
  
Interpol


	
class Interpol

	Interpol: Interpolation class. Handles lookup from a 1-dimensional array of real-numbered values.Returns ‘y’ value based on given ‘x’ value. Can either use interpolation or roundoff to the nearest index.


	
proc

	void (shared message field)      Shared message for process and reinit






	
setXmin()

	(destination message field)      Assigns field value.






	
getXmin()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setXmax()

	(destination message field)      Assigns field value.






	
getXmax()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getY()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
input()

	(destination message field)      Interpolates using the input as x value.






	
process()

	(destination message field)      Handles process call, updates internal time stamp.






	
reinit()

	(destination message field)      Handles reinit call.






	
lookupOut

	double (source message field)      respond to a request for a value lookup






	
xmin

	double (value field)      Minimum value of x. x below this will result in y[0] being returned.






	
xmax

	double (value field)      Maximum value of x. x above this will result in y[last] being returned.






	
y

	double (value field)      Looked up value.













          

      

      

    

  

    
      
          
            
  
Interpol2D


	
class Interpol2D

	Interpol2D: Interpolation class. Handles lookup from a 2-dimensional grid of real-numbered values. Returns ‘z’ value based on given ‘x’ and ‘y’ values. Can either use interpolation or roundoff to the nearest index.


	
lookupReturn2D

	void (shared message field)      This is a shared message for doing lookups on the table. Receives 2 doubles: x, y. Sends back a double with the looked-up z value.






	
lookup()

	(destination message field)      Looks up table value based on indices v1 and v2, and sendsvalue back using the ‘lookupOut’ message






	
setXmin()

	(destination message field)      Assigns field value.






	
getXmin()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setXmax()

	(destination message field)      Assigns field value.






	
getXmax()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setXdivs()

	(destination message field)      Assigns field value.






	
getXdivs()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDx()

	(destination message field)      Assigns field value.






	
getDx()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setYmin()

	(destination message field)      Assigns field value.






	
getYmin()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setYmax()

	(destination message field)      Assigns field value.






	
getYmax()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setYdivs()

	(destination message field)      Assigns field value.






	
getYdivs()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDy()

	(destination message field)      Assigns field value.






	
getDy()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTable()

	(destination message field)      Assigns field value.






	
getTable()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getZ()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTableVector2D()

	(destination message field)      Assigns field value.






	
getTableVector2D()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
lookupOut

	double (source message field)      respond to a request for a value lookup






	
xmin

	double (value field)      Minimum value for x axis of lookup table






	
xmax

	double (value field)      Maximum value for x axis of lookup table






	
xdivs

	unsigned int (value field)      # of divisions on x axis of lookup table






	
dx

	double (value field)      Increment on x axis of lookup table






	
ymin

	double (value field)      Minimum value for y axis of lookup table






	
ymax

	double (value field)      Maximum value for y axis of lookup table






	
ydivs

	unsigned int (value field)      # of divisions on y axis of lookup table






	
dy

	double (value field)      Increment on y axis of lookup table






	
tableVector2D

	vector< vector<double> > (value field)      Get the entire table.






	
table

	vector<unsigned int>,double (lookup field)      Lookup an entry on the table






	
z

	vector<double>,double (lookup field)      Interpolated value for specified x and y. This is provided for debugging. Normally other objects will retrieve interpolated values via lookup message.













          

      

      

    

  

    
      
          
            
  
IzhIF


	
class IzhIF

	Izhikevich neuron (integrate and fire).d Vm /dt = a0 * Vm^2 + b0 * Vm + c0 - u + I/Cm d u / dt = a * ( b * Vm - u ) at each spike, u -> u + d by default, a0 = 0.04e6/V/s, b0 = 5e3/s, c0 = 140 V/s are set to SI units, so use SI consistently, or change a0, b0, c0 also if you wish to use other units. Rm, Em from Compartment are not used here, vReset is same as c in the usual formalism. At rest, u0 = b V0, and V0 = ( -(-b0-b) +/- sqrt((b0-b)^2 - 4*a0*c0)) / (2*a0) equivalently, to obtain resting Em, set b = (a0*Em^2 + b0*Em + c0)/Em


	
setA0()

	(destination message field)      Assigns field value.






	
getA0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setB0()

	(destination message field)      Assigns field value.






	
getB0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setC0()

	(destination message field)      Assigns field value.






	
getC0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setA()

	(destination message field)      Assigns field value.






	
getA()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setB()

	(destination message field)      Assigns field value.






	
getB()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setD()

	(destination message field)      Assigns field value.






	
getD()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setU()

	(destination message field)      Assigns field value.






	
getU()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setUInit()

	(destination message field)      Assigns field value.






	
getUInit()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setVPeak()

	(destination message field)      Assigns field value.






	
getVPeak()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
a0

	double (value field)      factor for Vm^2 term in evolution equation for Vm: d Vm /dt = a0 * Vm^2 + b0 * Vm + c0 - u + I/Cm






	
b0

	double (value field)      factor for Vm term in evolution equation for Vm: d Vm /dt = a0 * Vm^2 + b0 * Vm + c0 - u + I/Cm






	
c0

	double (value field)      constant term in evolution equation for Vm: d Vm /dt = a0 * Vm^2 + b0 * Vm + c0 - u + I/Cm






	
a

	double (value field)      a as in d u / dt = a * ( b * Vm - u )






	
b

	double (value field)      b as in d u / dt = a * ( b * Vm - u )






	
d

	double (value field)      u jumps by d at every spike






	
u

	double (value field)      u is an adaptation variable






	
uInit

	double (value field)      Initial value of u. It is reset at reinit()






	
vPeak

	double (value field)      Vm is reset when Vm > vPeak













          

      

      

    

  

    
      
          
            
  
IzhikevichNrn


	
class IzhikevichNrn

	
	Izhikevich model of spiking neuron (Izhikevich,EM. 2003. Simple model of spiking neurons. Neural Networks, IEEE Transactions on 14(6). pp 1569-1572).

	
	This class obeys the equations (in physiological units):

	dVm/dt = 0.04 * Vm^2 + 5 * Vm + 140 - u + inject
du/dt = a * (b * Vm - u)





if Vm >= Vmax then Vm = c and u = u + d
Vmax = 30 mV in the paper.






	
proc

	void (shared message field)      Shared message to receive Process message from scheduler






	
channel

	void (shared message field)      This is a shared message from a IzhikevichNrn to channels.The first entry is a MsgDest for the info coming from the channel. It expects Gk and Ek from the channel as args. The second entry is a MsgSrc sending Vm






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
setVmax()

	(destination message field)      Assigns field value.






	
getVmax()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setC()

	(destination message field)      Assigns field value.






	
getC()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setD()

	(destination message field)      Assigns field value.






	
getD()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setA()

	(destination message field)      Assigns field value.






	
getA()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setB()

	(destination message field)      Assigns field value.






	
getB()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getU()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setVm()

	(destination message field)      Assigns field value.






	
getVm()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getIm()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setInject()

	(destination message field)      Assigns field value.






	
getInject()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setRmByTau()

	(destination message field)      Assigns field value.






	
getRmByTau()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setAccommodating()

	(destination message field)      Assigns field value.






	
getAccommodating()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setU0()

	(destination message field)      Assigns field value.






	
getU0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setInitVm()

	(destination message field)      Assigns field value.






	
getInitVm()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setInitU()

	(destination message field)      Assigns field value.






	
getInitU()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setAlpha()

	(destination message field)      Assigns field value.






	
getAlpha()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setBeta()

	(destination message field)      Assigns field value.






	
getBeta()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setGamma()

	(destination message field)      Assigns field value.






	
getGamma()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
injectMsg()

	(destination message field)      Injection current into the neuron.






	
cDest()

	(destination message field)      Destination message to modify parameter c at runtime.






	
dDest()

	(destination message field)      Destination message to modify parameter d at runtime.






	
bDest()

	(destination message field)      Destination message to modify parameter b at runtime






	
aDest()

	(destination message field)      Destination message modify parameter a at runtime.






	
handleChannel()

	(destination message field)      Handles conductance and reversal potential arguments from Channel






	
VmOut

	double (source message field)      Sends out Vm






	
spikeOut

	double (source message field)      Sends out spike events






	
VmOut

	double (source message field)      Sends out Vm






	
Vmax

	double (value field)      Maximum membrane potential. Membrane potential is reset to c whenever it reaches Vmax. NOTE: Izhikevich model specifies the PEAK voltage, rather than THRSHOLD voltage. The threshold depends on the previous history.






	
c

	double (value field)      Reset potential. Membrane potential is reset to c whenever it reaches Vmax.






	
d

	double (value field)      Parameter d in Izhikevich model. Unit is V/s.






	
a

	double (value field)      Parameter a in Izhikevich model. Unit is s^{-1}






	
b

	double (value field)      Parameter b in Izhikevich model. Unit is s^{-1}






	
u

	double (value field)      Parameter u in Izhikevich equation. Unit is V/s






	
Vm

	double (value field)      Membrane potential, equivalent to v in Izhikevich equation.






	
Im

	double (value field)      Total current going through the membrane. Unit is A.






	
inject

	double (value field)      External current injection into the neuron






	
RmByTau

	double (value field)      Hidden coefficient of input current term (I) in Izhikevich model. Defaults to 1e9 Ohm/s.






	
accommodating

	bool (value field)      True if this neuron is an accommodating one. The equation for recovery variable u is special in this case.






	
u0

	double (value field)      This is used for accommodating neurons where recovery variables u is computed as: u += tau*a*(b*(Vm-u0))






	
initVm

	double (value field)      Initial membrane potential. Unit is V.






	
initU

	double (value field)      Initial value of u.






	
alpha

	double (value field)      Coefficient of v^2 in Izhikevich equation. Defaults to 0.04 in physiological unit. In SI it should be 40000.0. Unit is V^-1 s^{-1}






	
beta

	double (value field)      Coefficient of v in Izhikevich model. Defaults to 5 in physiological unit, 5000.0 for SI units. Unit is s^{-1}






	
gamma

	double (value field)      Constant term in Izhikevich model. Defaults to 140 in both physiological and SI units. unit is V/s.













          

      

      

    

  

    
      
          
            
  
Ksolve


	
class Ksolve

	
	
xCompt

	void (shared message field)      Shared message for pool exchange for cross-compartment reactions. Exchanges latest values of all pools that participate in such reactions.






	
proc

	void (shared message field)      Shared message for process and reinit. These are used for all regular Ksolve calculations including interfacing with the diffusion calculations by a Dsolve.






	
init

	void (shared message field)      Shared message for initProc and initReinit. This is used when the system has cross-compartment reactions.






	
setMethod()

	(destination message field)      Assigns field value.






	
getMethod()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setEpsAbs()

	(destination message field)      Assigns field value.






	
getEpsAbs()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setEpsRel()

	(destination message field)      Assigns field value.






	
getEpsRel()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCompartment()

	(destination message field)      Assigns field value.






	
getCompartment()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumLocalVoxels()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNVec()

	(destination message field)      Assigns field value.






	
getNVec()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNumAllVoxels()

	(destination message field)      Assigns field value.






	
getNumAllVoxels()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNumPools()

	(destination message field)      Assigns field value.






	
getNumPools()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getEstimatedDt()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getStoich()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
voxelVol()

	(destination message field)      Handles updates to all voxels. Comes from parent ChemCompt object.






	
xComptIn()

	(destination message field)      Handles arriving pool ‘n’ values used in cross-compartment reactions.






	
process()

	(destination message field)      Handles process call from Clock






	
reinit()

	(destination message field)      Handles reinit call from Clock






	
initProc()

	(destination message field)      Handles initProc call from Clock






	
initReinit()

	(destination message field)      Handles initReinit call from Clock






	
xComptOut

	Id,vector<double> (source message field)      Sends ‘n’ of all molecules participating in cross-compartment reactions between any juxtaposed voxels between current compt and another compartment. This includes molecules local to this compartment, as well as proxy molecules belonging elsewhere. A(t+1) = (Alocal(t+1) + AremoteProxy(t+1)) - Alocal(t) A(t+1) = (Aremote(t+1) + Aproxy(t+1)) - Aproxy(t) Then we update A on the respective solvers with: Alocal(t+1) = Aproxy(t+1) = A(t+1) This is equivalent to sending dA over on each timestep.






	
method

	string (value field)      Integration method, using GSL. So far only explict. Options are:rk5: The default Runge-Kutta-Fehlberg 5th order adaptive dt methodgsl: alias for the aboverk4: The Runge-Kutta 4th order fixed dt methodrk2: The Runge-Kutta 2,3 embedded fixed dt methodrkck: The Runge-Kutta Cash-Karp (4,5) methodrk8: The Runge-Kutta Prince-Dormand (8,9) method






	
epsAbs

	double (value field)      Absolute permissible integration error range.






	
epsRel

	double (value field)      Relative permissible integration error range.






	
compartment

	Id (value field)      Compartment in which the Ksolve reaction system lives.






	
numLocalVoxels

	unsigned int (value field)      Number of voxels in the core reac-diff system, on the current solver.






	
numAllVoxels

	unsigned int (value field)      Number of voxels in the entire reac-diff system, including proxy voxels to represent abutting compartments.






	
numPools

	unsigned int (value field)      Number of molecular pools in the entire reac-diff system, including variable, function and buffered.






	
estimatedDt

	double (value field)      Estimated timestep for reac system based on Euler error






	
stoich

	Id (value field)      Id for stoichiometry object tied to this Ksolve






	
nVec

	unsigned int,vector<double> (lookup field)      vector of pool counts. Index specifies which voxel.













          

      

      

    

  

    
      
          
            
  
LIF


	
class LIF

	Leaky Integrate-and-Fire neuron









          

      

      

    

  

    
      
          
            
  
Leakage


	
class Leakage

	Leakage: Passive leakage channel.









          

      

      

    

  

    
      
          
            
  
MarkovChannel


	
class MarkovChannel

	MarkovChannel : Multistate ion channel class.It deals with ion channels which can be found in one of multiple states, some of which are conducting. This implementation assumes the occurence of first order kinetics to calculate the probabilities of the channel being found in all states. Further, the rates of transition between these states can be constant, voltage-dependent or ligand dependent (only one ligand species). The current flow obtained from the channel is calculated in a deterministic method by solving the system of differential equations obtained from the assumptions above.


	
setLigandConc()

	(destination message field)      Assigns field value.






	
getLigandConc()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setVm()

	(destination message field)      Assigns field value.






	
getVm()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNumStates()

	(destination message field)      Assigns field value.






	
getNumStates()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNumOpenStates()

	(destination message field)      Assigns field value.






	
getNumOpenStates()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getState()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setInitialState()

	(destination message field)      Assigns field value.






	
getInitialState()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setLabels()

	(destination message field)      Assigns field value.






	
getLabels()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setGbar()

	(destination message field)      Assigns field value.






	
getGbar()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
handleLigandConc()

	(destination message field)      Deals with incoming messages containing information of ligand concentration






	
handleState()

	(destination message field)      Deals with incoming message from MarkovSolver object containing state information of the channel.






	
ligandConc

	double (value field)      Ligand concentration.






	
Vm

	double (value field)      Membrane voltage.






	
numStates

	unsigned int (value field)      The number of states that the channel can occupy.






	
numOpenStates

	unsigned int (value field)      The number of states which are open/conducting.






	
state

	vector<double> (value field)      This is a row vector that contains the probabilities of finding the channel in each state.






	
initialState

	vector<double> (value field)      This is a row vector that contains the probabilities of finding the channel in each state at t = 0. The state of the channel is reset to this value during a call to reinit()






	
labels

	vector<string> (value field)      Labels for each state.






	
gbar

	vector<double> (value field)      A row vector containing the conductance associated with each of the open/conducting states.













          

      

      

    

  

    
      
          
            
  
MarkovGslSolver


	
class MarkovGslSolver

	Solver for Markov Channel.


	
proc

	void (shared message field)      Shared message for process and reinit






	
getIsInitialized()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setMethod()

	(destination message field)      Assigns field value.






	
getMethod()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setRelativeAccuracy()

	(destination message field)      Assigns field value.






	
getRelativeAccuracy()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setAbsoluteAccuracy()

	(destination message field)      Assigns field value.






	
getAbsoluteAccuracy()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setInternalDt()

	(destination message field)      Assigns field value.






	
getInternalDt()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
init()

	(destination message field)      Initialize solver parameters.






	
handleQ()

	(destination message field)      Handles information regarding the instantaneous rate matrix from the MarkovRateTable class.






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
stateOut

	vector<double> (source message field)      Sends updated state to the MarkovChannel class.






	
isInitialized

	bool (value field)      True if the message has come in to set solver parameters.






	
method

	string (value field)      Numerical method to use.






	
relativeAccuracy

	double (value field)      Accuracy criterion






	
absoluteAccuracy

	double (value field)      Another accuracy criterion






	
internalDt

	double (value field)      internal timestep to use.













          

      

      

    

  

    
      
          
            
  
MarkovRateTable


	
class MarkovRateTable

	Rate Table for Markov channel calculations.


	
channel

	void (shared message field)      This message couples the rate table to the compartment. The rate table needs updates on voltage in order to compute the rate table.






	
proc

	void (shared message field)      This is a shared message to receive Process message from thescheduler. The first entry is a MsgDest for the Process operation. It has a single argument, ProcInfo, which holds lots of information about current time, thread, dt andso on. The second entry is a MsgDest for the Reinit operation. It also uses ProcInfo.






	
handleVm()

	(destination message field)      Handles incoming message containing voltage information.






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
init()

	(destination message field)      Initialization of the class. Allocates memory for all the tables.






	
handleLigandConc()

	(destination message field)      Handles incoming message containing ligand concentration.






	
set1d()

	(destination message field)      Setting up of 1D lookup table for the (i,j)’th rate.






	
set2d()

	(destination message field)      Setting up of 2D lookup table for the (i,j)’th rate.






	
setconst()

	(destination message field)      Setting a constant value for the (i,j)’th rate. Internally, this is    stored as a 1-D rate with a lookup table containing 1 entry.






	
setVm()

	(destination message field)      Assigns field value.






	
getVm()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setLigandConc()

	(destination message field)      Assigns field value.






	
getLigandConc()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getQ()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getSize()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
instratesOut

	vector< vector<double> > (source message field)      Sends out instantaneous rate information of varying transition ratesat each time step.






	
Vm

	double (value field)      Membrane voltage.






	
ligandConc

	double (value field)      Ligand concentration.






	
Q

	vector< vector<double> > (value field)      Instantaneous rate matrix.






	
size

	unsigned int (value field)      Dimension of the families of lookup tables. Is always equal to the number of states in the model.













          

      

      

    

  

    
      
          
            
  
MarkovSolver


	
class MarkovSolver

	
	
proc

	void (shared message field)      This is a shared message to receive Process message from thescheduler. The first entry is a MsgDest for the Process operation. It has a single argument, ProcInfo, which holds lots of information about current time, thread, dt andso on. The second entry is a MsgDest for the Reinit operation. It also uses ProcInfo.






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call













          

      

      

    

  

    
      
          
            
  
MarkovSolverBase


	
class MarkovSolverBase

	Solver for Markov Channel.


	
channel

	void (shared message field)      This message couples the MarkovSolverBase to the Compartment. The compartment needs Vm in order to look up the correct matrix exponential for computing the state.






	
proc

	void (shared message field)      This is a shared message to receive Process message from thescheduler. The first entry is a MsgDest for the Process operation. It has a single argument, ProcInfo, which holds lots of information about current time, thread, dt andso on. The second entry is a MsgDest for the Reinit operation. It also uses ProcInfo.






	
handleVm()

	(destination message field)      Handles incoming message containing voltage information.






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
ligandConc()

	(destination message field)      Handles incoming message containing ligand concentration.






	
init()

	(destination message field)      Setups the table of matrix exponentials associated with the solver object.






	
getQ()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getState()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setInitialState()

	(destination message field)      Assigns field value.






	
getInitialState()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setXmin()

	(destination message field)      Assigns field value.






	
getXmin()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setXmax()

	(destination message field)      Assigns field value.






	
getXmax()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setXdivs()

	(destination message field)      Assigns field value.






	
getXdivs()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getInvdx()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setYmin()

	(destination message field)      Assigns field value.






	
getYmin()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setYmax()

	(destination message field)      Assigns field value.






	
getYmax()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setYdivs()

	(destination message field)      Assigns field value.






	
getYdivs()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getInvdy()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
stateOut

	vector<double> (source message field)      Sends updated state to the MarkovChannel class.






	
Q

	vector< vector<double> > (value field)      Instantaneous rate matrix.






	
state

	vector<double> (value field)      Current state of the channel.






	
initialState

	vector<double> (value field)      Initial state of the channel.






	
xmin

	double (value field)      Minimum value for x axis of lookup table






	
xmax

	double (value field)      Maximum value for x axis of lookup table






	
xdivs

	unsigned int (value field)      # of divisions on x axis of lookup table






	
invdx

	double (value field)      Reciprocal of increment on x axis of lookup table






	
ymin

	double (value field)      Minimum value for y axis of lookup table






	
ymax

	double (value field)      Maximum value for y axis of lookup table






	
ydivs

	unsigned int (value field)      # of divisions on y axis of lookup table






	
invdy

	double (value field)      Reciprocal of increment on y axis of lookup table













          

      

      

    

  

    
      
          
            
  

          

      

      

    

  

    
      
          
            
  
MeshEntry


	
class MeshEntry

	One voxel in a chemical reaction compartment


	
proc

	void (shared message field)      Shared message for process and reinit






	
mesh

	void (shared message field)      Shared message for updating mesh volumes and subdivisions,typically controls pool volumes






	
getVolume()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getDimensions()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getMeshType()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getCoordinates()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNeighbors()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getDiffusionArea()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getDiffusionScaling()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
getVolume()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
remeshOut

	double,unsigned int,unsigned int,vector<unsigned int>,vector<double> (source message field)      Tells the target pool or other entity that the compartment subdivision(meshing) has changed, and that it has to redo its volume and memory allocation accordingly.Arguments are: oldvol, numTotalEntries, startEntry, localIndices, volsThe vols specifies volumes of each local mesh entry. It also specifieshow many meshEntries are present on the local node.The localIndices vector is used for general load balancing only.It has a list of the all meshEntries on current node.If it is empty, we assume block load balancing. In this secondcase the contents of the current node go from startEntry to startEntry + vols.size().






	
remeshReacsOut

	void (source message field)      Tells connected enz or reac that the compartment subdivision(meshing) has changed, and that it has to redo its volume-dependent rate terms like numKf_ accordingly.






	
volume

	double (value field)      Volume of this MeshEntry






	
dimensions

	unsigned int (value field)      number of dimensions of this MeshEntry






	
meshType

	unsigned int (value field)       The MeshType defines the shape of the mesh entry. 0: Not assigned 1: cuboid 2: cylinder 3. cylindrical shell 4: cylindrical shell segment 5: sphere 6: spherical shell 7: spherical shell segment 8: Tetrahedral






	
Coordinates

	vector<double> (value field)      Coordinates that define current MeshEntry. Depend on MeshType.






	
neighbors

	vector<unsigned int> (value field)      Indices of other MeshEntries that this one connects to






	
DiffusionArea

	vector<double> (value field)      Diffusion area for geometry of interface






	
DiffusionScaling

	vector<double> (value field)      Diffusion scaling for geometry of interface













          

      

      

    

  

    
      
          
            
  
MgBlock


	
class MgBlock

	MgBlock: Hodgkin-Huxley type voltage-gated Ion channel. Something like the old tabchannel from GENESIS, but also presents a similar interface as hhchan from GENESIS.


	
origChannel()

	(destination message field)






	
setKMg_A()

	(destination message field)      Assigns field value.






	
getKMg_A()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setKMg_B()

	(destination message field)      Assigns field value.






	
getKMg_B()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCMg()

	(destination message field)      Assigns field value.






	
getCMg()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setZk()

	(destination message field)      Assigns field value.






	
getZk()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
KMg_A

	double (value field)      1/eta






	
KMg_B

	double (value field)      1/gamma






	
CMg

	double (value field)      [Mg] in mM






	
Zk

	double (value field)      Charge on ion













          

      

      

    

  

    
      
          
            
  
Msg


	
class Msg

	
	
getE1()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getE2()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getSrcFieldsOnE1()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getDestFieldsOnE2()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getSrcFieldsOnE2()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getDestFieldsOnE1()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getAdjacent()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
e1

	Id (value field)      Id of source Element.






	
e2

	Id (value field)      Id of source Element.






	
srcFieldsOnE1

	vector<string> (value field)      Names of SrcFinfos for messages going from e1 to e2. There arematching entries in the destFieldsOnE2 vector






	
destFieldsOnE2

	vector<string> (value field)      Names of DestFinfos for messages going from e1 to e2. There arematching entries in the srcFieldsOnE1 vector






	
srcFieldsOnE2

	vector<string> (value field)      Names of SrcFinfos for messages going from e2 to e1. There arematching entries in the destFieldsOnE1 vector






	
destFieldsOnE1

	vector<string> (value field)      Names of destFinfos for messages going from e2 to e1. There arematching entries in the srcFieldsOnE2 vector






	
adjacent

	ObjId,ObjId (lookup field)      The element adjacent to the specified element













          

      

      

    

  

    
      
          
            
  
Mstring


	
class Mstring

	
	
setThis()

	(destination message field)      Assigns field value.






	
getThis()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setValue()

	(destination message field)      Assigns field value.






	
getValue()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
this

	string (value field)      Access function for entire Mstring object.






	
value

	string (value field)      Access function for value field of Mstring object,which happens also to be the entire contents of the object.













          

      

      

    

  

    
      
          
            
  
NMDAChan


	
class NMDAChan

	NMDAChan: Ligand-gated ion channel incorporating both the Mg block and a GHK calculation for Calcium component of the current carried by the channel. Assumes a steady reversal potential regardless of Ca gradients. Derived from SynChan.


	
setKMg_A()

	(destination message field)      Assigns field value.






	
getKMg_A()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setKMg_B()

	(destination message field)      Assigns field value.






	
getKMg_B()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCMg()

	(destination message field)      Assigns field value.






	
getCMg()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTemperature()

	(destination message field)      Assigns field value.






	
getTemperature()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setExtCa()

	(destination message field)      Assigns field value.






	
getExtCa()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setIntCa()

	(destination message field)      Assigns field value.






	
getIntCa()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setIntCaScale()

	(destination message field)      Assigns field value.






	
getIntCaScale()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setIntCaOffset()

	(destination message field)      Assigns field value.






	
getIntCaOffset()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCondFraction()

	(destination message field)      Assigns field value.






	
getCondFraction()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getICa()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setPermeability()

	(destination message field)      Assigns field value.






	
getPermeability()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
assignIntCa()

	(destination message field)      Assign the internal concentration of Ca. The final value is computed as:      intCa = assignIntCa * intCaScale + intCaOffset






	
ICaOut

	double (source message field)      Calcium current portion of the total current carried by the NMDAR






	
KMg_A

	double (value field)      1/eta






	
KMg_B

	double (value field)      1/gamma






	
CMg

	double (value field)      [Mg] in mM






	
temperature

	double (value field)      Temperature in degrees Kelvin.






	
extCa

	double (value field)      External concentration of Calcium in millimolar






	
intCa

	double (value field)      Internal concentration of Calcium in millimolar.This is the final value used by the internal calculations, and may also be updated by the assignIntCa message after offset and scaling.






	
intCaScale

	double (value field)      Scale factor for internal concentration of Calcium in mM, applied to values coming in through the assignIntCa message. Required because in many models the units of calcium may differ.






	
intCaOffset

	double (value field)      Offsetfor internal concentration of Calcium in mM, applied _after_ the scaling to mM is done. Applied to values coming in through the assignIntCa message. Required because in many models the units of calcium may differ.






	
condFraction

	double (value field)      Fraction of total channel conductance that is due to the passage of Ca ions. This is related to the ratio of permeabilities of different ions, and is typically in the range of 0.02. This small fraction is largely because the concentrations of Na and K ions are far larger than that of Ca. Thus, even though the channel is more permeable to Ca, the conductivity and hence current due to Ca is smaller.






	
ICa

	double (value field)      Current carried by Ca ions






	
permeability

	double (value field)      Permeability. Alias for Gbar. Note that the mapping is not really correct. Permeability is in units of m/s whereas Gbar is 1/ohm. Some nasty scaling is involved in the conversion, some of which itself involves concentration variables. Done internally.













          

      

      

    

  

    
      
          
            
  
NSDFWriter


	
class NSDFWriter

	NSDF file writer for saving data.


	
proc

	void (shared message field)      Shared message to receive process and reinit






	
setNumEventInput()

	(destination message field)      Assigns number of field entries in field array.






	
getNumEventInput()

	(destination message field)      Requests number of field entries in field array.The requesting Element must provide a handler for the returned value.






	
process()

	(destination message field)      Handle process calls. Collects data in buffer and if number of steps since last write exceeds flushLimit, writes to file.






	
reinit()

	(destination message field)      Reinitialize the object. If the current file handle is valid, it tries to close that and open the file specified in current filename field.













          

      

      

    

  

    
      
          
            
  
Nernst


	
class Nernst

	Nernst: Calculates Nernst potential for a given ion based on Cin and Cout, the inside and outside concentrations. Immediately sends out the potential to all targets.


	
getE()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTemperature()

	(destination message field)      Assigns field value.






	
getTemperature()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setValence()

	(destination message field)      Assigns field value.






	
getValence()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCin()

	(destination message field)      Assigns field value.






	
getCin()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCout()

	(destination message field)      Assigns field value.






	
getCout()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setScale()

	(destination message field)      Assigns field value.






	
getScale()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
ci()

	(destination message field)      Set internal conc of ion, and immediately send out the updated E






	
co()

	(destination message field)      Set external conc of ion, and immediately send out the updated E






	
Eout

	double (source message field)      Computed reversal potential






	
E

	double (value field)      Computed reversal potential






	
Temperature

	double (value field)      Temperature of cell






	
valence

	int (value field)      Valence of ion in Nernst calculation






	
Cin

	double (value field)      Internal conc of ion






	
Cout

	double (value field)      External conc of ion






	
scale

	double (value field)      Voltage scale factor













          

      

      

    

  

    
      
          
            
  
NeuroMesh


	
class NeuroMesh

	
	
setSubTree()

	(destination message field)      Assigns field value.






	
getSubTree()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSubTreePath()

	(destination message field)      Assigns field value.






	
getSubTreePath()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSeparateSpines()

	(destination message field)      Assigns field value.






	
getSeparateSpines()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumSegments()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumDiffCompts()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getParentVoxel()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getElecComptList()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getElecComptMap()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getStartVoxelInCompt()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getEndVoxelInCompt()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getSpineVoxelOnDendVoxel()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getDendVoxelsOnCompartment()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getSpineVoxelsOnCompartment()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDiffLength()

	(destination message field)      Assigns field value.






	
getDiffLength()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setGeometryPolicy()

	(destination message field)      Assigns field value.






	
getGeometryPolicy()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
spineListOut

	vector<Id>,vector<Id>,vector<unsigned int> (source message field)      Request SpineMesh to construct self based on list of electrical compartments that this NeuroMesh has determined are spine shaft and spine head respectively. Also passes in the info about where each spine is connected to the NeuroMesh. Arguments: shaft compartment Ids, head compartment Ids,index of matching parent voxels for each spine






	
psdListOut

	vector<double>,vector<Id>,vector<unsigned int> (source message field)      Tells PsdMesh to build a mesh. Arguments: (Cell Id, Coordinates of each psd, Id of electrical compartment mapped to each voxel, index of matching parent voxels for each spine.) The coordinates each have 8 entries:xyz of centre of psd, xyz of vector perpendicular to psd, psd diameter,  diffusion distance from parent compartment to PSD






	
subTree

	vector<ObjId> (value field)      Set of compartments in which to embed chemical reaction systems. If the compartments happen to be contiguousthen also set up diffusion between them. Can alsohandle cases where the same cell is divided into multiplenon-diffusively-coupled compartments






	
subTreePath

	string (value field)      Set of compartments to model, defined as a path string. If they happen to be contiguous then also set up diffusion between the compartments. Can alsohandle cases where the same cell is divided into multiplenon-diffusively-coupled compartments






	
separateSpines

	bool (value field)      Flag: when separateSpines is true, the traversal separates any compartment with the strings ‘spine’, ‘head’, ‘shaft’ or ‘neck’ in its name,Allows to set up separate mesh for spines, based on the same cell model. Requires for the spineListOut message tobe sent to the target SpineMesh object.






	
numSegments

	unsigned int (value field)      Number of cylindrical/spherical segments in model






	
numDiffCompts

	unsigned int (value field)      Number of diffusive compartments in model






	
parentVoxel

	vector<unsigned int> (value field)      Vector of indices of parents of each voxel.






	
elecComptList

	vector<Id> (value field)      Vector of Ids of all electrical compartments in this NeuroMesh. Ordering is as per the tree structure built in the NeuroMesh, and may differ from Id order. Ordering matches that used for startVoxelInCompt and endVoxelInCompt






	
elecComptMap

	vector<Id> (value field)      Vector of Ids of electrical compartments that map to each voxel. This is necessary because the order of the IDs may differ from the ordering of the voxels. Additionally, there are typically many more voxels than there are electrical compartments. So many voxels point to the same elecCompt.






	
startVoxelInCompt

	vector<unsigned int> (value field)      Index of first voxel that maps to each electrical compartment. Each elecCompt has one or more voxels. The voxels in a compartment are numbered sequentially.






	
endVoxelInCompt

	vector<unsigned int> (value field)      Index of end voxel that maps to each electrical compartment. In keeping with C and Python convention, this is one more than the last voxel. Each elecCompt has one or more voxels. The voxels in a compartment are numbered sequentially.






	
spineVoxelOnDendVoxel

	vector<int> (value field)      Voxel index of spine voxel on each dend voxel. Assume that there is never more than one spine per dend voxel. If no spine present, the entry is -1. Note that the same index is used both for spine head and PSDs.






	
diffLength

	double (value field)      Diffusive length constant to use for subdivisions. The system willattempt to subdivide cell using diffusive compartments ofthe specified diffusion lengths as a maximum.In order to get integral numbersof compartments in each segment, it may subdivide more finely.Uses default of 0.5 microns, that is, half typical lambda.For default, consider a tau of about 1 second for mostreactions, and a diffusion const of about 1e-12 um^2/sec.This gives lambda of 1 micron






	
geometryPolicy

	string (value field)      Policy for how to interpret electrical model geometry (which is a branching 1-dimensional tree) in terms of 3-D constructslike spheres, cylinders, and cones.There are three options, default, trousers, and cylinder:default mode: - Use frustrums of cones. Distal diameter is always from compt dia. - For linear dendrites (no branching), proximal diameter is  diameter of the parent compartment - For branching dendrites and dendrites emerging from soma, proximal diameter is from compt dia. Don’t worry about overlap. - Place somatic dendrites on surface of spherical soma, or at ends of cylindrical soma - Place dendritic spines on surface of cylindrical dendrites, not emerging from their middle.trousers mode: - Use frustrums of cones. Distal diameter is always from compt dia. - For linear dendrites (no branching), proximal diameter is  diameter of the parent compartment - For branching dendrites, use a trouser function. Avoid overlap. - For soma, use some variant of trousers. Here we must avoid overlap - For spines, use a way to smoothly merge into parent dend. Radius of curvature should be similar to that of the spine neck. - Place somatic dendrites on surface of spherical soma, or at ends of cylindrical soma - Place dendritic spines on surface of cylindrical dendrites, not emerging from their middle.cylinder mode: - Use cylinders. Diameter is just compartment dia. - Place somatic dendrites on surface of spherical soma, or at ends of cylindrical soma - Place dendritic spines on surface of cylindrical dendrites, not emerging from their middle. - Ignore spatial overlap.






	
dendVoxelsOnCompartment

	ObjId,vector<unsigned int> (lookup field)      Returns vector of all chem voxels on specified electrical compartment of the dendrite. Returns empty vec if none found, or if the compartment isn’t on the dendrite.






	
spineVoxelsOnCompartment

	ObjId,vector<unsigned int> (lookup field)      Returns vector of all chem voxels on specified electrical compartment, which should be a spine head or shaft . Returns empty vec if no chem voxels found, or if the compartment isn’t on the dendrite. Note that spine and PSD voxel indices are the same for a given spine head.













          

      

      

    

  

    
      
          
            
  
Neuron


	
class Neuron

	Neuron - Manager for neurons. Handles high-level specification of distribution of spines, channels and passive properties. Also manages spine resizing through a Spine FieldElement.


	
setRM()

	(destination message field)      Assigns field value.






	
getRM()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setRA()

	(destination message field)      Assigns field value.






	
getRA()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCM()

	(destination message field)      Assigns field value.






	
getCM()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setEm()

	(destination message field)      Assigns field value.






	
getEm()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTheta()

	(destination message field)      Assigns field value.






	
getTheta()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setPhi()

	(destination message field)      Assigns field value.






	
getPhi()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSourceFile()

	(destination message field)      Assigns field value.






	
getSourceFile()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCompartmentLengthInLambdas()

	(destination message field)      Assigns field value.






	
getCompartmentLengthInLambdas()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumCompartments()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumSpines()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumBranches()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getPathDistanceFromSoma()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getGeometricalDistanceFromSoma()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getElectrotonicDistanceFromSoma()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getCompartments()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setChannelDistribution()

	(destination message field)      Assigns field value.






	
getChannelDistribution()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setPassiveDistribution()

	(destination message field)      Assigns field value.






	
getPassiveDistribution()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSpineDistribution()

	(destination message field)      Assigns field value.






	
getSpineDistribution()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getCompartmentsFromExpression()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getValuesFromExpression()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getSpinesFromExpression()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getSpinesOnCompartment()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getParentCompartmentOfSpine()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
buildSegmentTree()

	(destination message field)      Build the reference segment tree structure using the child compartments of the current Neuron. Fills in all the coords and length constant information into the segments, for later use when we build reduced compartment trees and channel distributions. Should only be called once, since subsequent use on a reduced model will lose the original full cell geometry.






	
setSpineAndPsdMesh()

	(destination message field)      Assigns the spine and psd mesh to the Neuron. This is used to build up a mapping from Spine entries on the Neuron to chem spines and PSDs, so that volume change operations from the Spine can propagate to the chem systems.






	
setSpineAndPsdDsolve()

	(destination message field)      Assigns the Dsolves used by spine and PSD to the Neuron. This is used to handle the rescaling of diffusion rates when spines are resized.






	
setNumSpine()

	(destination message field)      Assigns number of field entries in field array.






	
getNumSpine()

	(destination message field)      Requests number of field entries in field array.The requesting Element must provide a handler for the returned value.






	
RM

	double (value field)      Membrane resistivity, in ohm.m^2. Default value is 1.0.






	
RA

	double (value field)      Axial resistivity of cytoplasm, in ohm.m. Default value is 1.0.






	
CM

	double (value field)      Membrane Capacitance, in F/m^2. Default value is 0.01






	
Em

	double (value field)      Resting membrane potential of compartments, in Volts. Default value is -0.065.






	
theta

	double (value field)      Angle to rotate cell geometry, around long axis of neuron. Think Longitude. Units are radians. Default value is zero, which means no rotation.






	
phi

	double (value field)      Angle to rotate cell geometry, around elevation of neuron. Think Latitude. Units are radians. Default value is zero, which means no rotation.






	
sourceFile

	string (value field)      Name of source file from which to load a model. Accepts swc and dotp formats at present. Both these formats require that the appropriate channel definitions should have been loaded into /library.






	
compartmentLengthInLambdas

	double (value field)      Units: meters (SI).
Electrotonic length to use for the largest compartment in the model. Used to define subdivision of branches into compartments. For example, if we set compartmentLengthInLambdas  to 0.1, and lambda (electrotonic length) is 250 microns, then it sets the compartment length to 25 microns. Thus a dendritic branch of 500 microns is subdivided into 20 commpartments. If the branch is shorter than compartmentLengthInLambdas, then it is not subdivided. If compartmentLengthInLambdas is set to 0 then the original compartmental structure of the model is preserved.  Note that this routine does NOT merge branches, even if compartmentLengthInLambdas is bigger than the branch. While all this subdivision is being done, the Neuron class preserves as detailed a geometry as it can, so it can rebuild the more detailed version if needed. Default value of compartmentLengthInLambdas is 0.






	
numCompartments

	unsigned int (value field)      Number of electrical compartments in model.






	
numSpines

	unsigned int (value field)      Number of dendritic spines in model.






	
numBranches

	unsigned int (value field)      Number of branches in dendrites.






	
pathDistanceFromSoma

	vector<double> (value field)      geometrical path distance of each segment from soma, measured by threading along the dendrite.






	
geometricalDistanceFromSoma

	vector<double> (value field)      geometrical distance of each segment from soma.






	
electrotonicDistanceFromSoma

	vector<double> (value field)      geometrical distance of each segment from soma, as measured along the dendrite.






	
compartments

	vector<ObjId> (value field)      Vector of ObjIds of electrical compartments. Order matches order of segments, and also matches the order of the electrotonic and geometricalDistanceFromSoma vectors.






	
channelDistribution

	vector<string> (value field)      Specification for distribution of channels, CaConcens and any other model components that are defined as prototypes and have to be placed on the electrical compartments.
Arguments: proto path field expr [field expr]…


Each entry is terminated with an empty string. The prototype is any object created in /library, If a channel matching the prototype name already exists, then all subsequent operations are applied to the extant channel and a new one is not created. The paired arguments are as follows:




The field argument specifies the name of the parameter that is to be assigned by the expression.
The expression argument is a mathematical expression in the muparser framework, which permits most operations including trig and transcendental ones. Of course it also handles simple numerical values like 1.0, 1e-10 and so on. Available arguments for muParser are:



	p, g, L, len, dia, maxP, maxG, maxL

	p: path distance from soma, measured along dendrite, in metres.
g: geometrical distance from soma, in metres.
L: electrotonic distance (# of lambdas) from soma, along dend. No units.
len: length of compartment, in metres.
dia: for diameter of compartment, in metres.
maxP: Maximum value of p for this neuron.
maxG: Maximum value of g for this neuron.
maxL: Maximum value of L for this neuron.








The expression for the first field must evaluate to > 0 for the channel to be installed. For example, for channels, if Field == Gbar, and func( r, L, len, dia) < 0,
then the channel is not installed. This feature is typically used with the sign() or Heaviside H() function to limit range: for example: H(1 - L) will only put channels closer than one length constant from the soma, and zero elsewhere.
Available fields are:
Channels: Gbar (install), Ek
CaConcen: shellDia (install), shellFrac (install), tau, min
Unless otherwise noted, all fields are scaled appropriately by the dimensions of their compartment. Thus the channel maximal conductance Gbar is automatically scaled by the area of the compartment, and the user does not need to insert this scaling into the calculations.
All parameters are expressed in SI units. Conductance, for example, is Siemens/sq metre.


	Some example function forms might be for a channel Gbar:

	
	p < 10e-6 ? 4000.0

	equivalently,



	H(10e-6 - p) * 400

	equivalently,





( sign(10e-6 - p) + 1) * 200





Each of these forms instruct the function to set channel Gbar to 400 S/m^2 only within 10 microns path distance of soma


L < 1.0 ? 100 * exp( -L ) : 0.0
->Set channel Gbar to an exponentially falling function of electrotonic distance from soma, provided L is under 1.0 lambdas.









	
passiveDistribution

	vector<string> (value field)      Specification for distribution of passive properties of cell.
Arguments: . path field expr [field expr]…
Note that the arguments list starts with a period.  Each entry is terminated with an empty string. The paired arguments are as follows:
The field argument specifies the name of the parameter that is to be assigned by the expression.
The expression argument is a mathematical expression in the muparser framework, which permits most operations including trig and transcendental ones. Of course it also handles simple numerical values like 1.0, 1e-10 and so on. Available arguments for muParser are:



	p, g, L, len, dia, maxP, maxG, maxL

	p: path distance from soma, measured along dendrite, in metres.
g: geometrical distance from soma, in metres.
L: electrotonic distance (# of lambdas) from soma, along dend. No units.
len: length of compartment, in metres.
dia: for diameter of compartment, in metres.
maxP: Maximum value of p for this neuron.
maxG: Maximum value of g for this neuron.
maxL: Maximum value of L for this neuron.








Available fields are:
RM, RA, CM, Rm, Ra, Cm, Em, initVm
The first three fields are scaled appropriately by the dimensions of their compartment. Thus the membrane resistivity RM (ohms.m^2) is automatically scaled by the area of the compartment, and the user does not need to insert this scaling into the calculations to compute Rm.Using the Rm field lets the user directly assign the membrane resistance (in ohms), presumably using len and dia.
Similarly, RA (ohms.m) and CM (Farads/m^2) are specific units and the actual values for each compartment are assigned by scaling by length and diameter. Ra (ohms) and Cm (Farads) require explicit evaluation of the expression. All parameters are expressed in SI units. Conductance, for example, is Siemens/sq metre.
Note that time these calculations do NOT currently include spines






	
spineDistribution

	vector<string> (value field)      Specification for distribution of spines on dendrite.
Arguments: proto path spacing expr [field expr]…


Each entry is terminated with an empty string. The prototype is any spine object created in /library,




The path is the wildcard path of compartments on which to place the spine.
The spacing is the spacing of spines, in metres.
The expression argument is a mathematical expression in the muparser framework, which permits most operations including trig and transcendental ones. Of course it also handles simple numerical values like 1.0, 1e-10 and so on. The paired arguments are as follows:
The field argument specifies the name of the parameter that is to be assigned by the expression.
The expression argument is a mathematical expression as above. Available arguments for muParser are:

p, g, L, len, dia, maxP, maxG, maxL

p: path distance from soma, measured along dendrite, in metres.
g: geometrical distance from soma, in metres.
L: electrotonic distance (# of lambdas) from soma, along dend. No units.
len: length of compartment, in metres.
dia: for diameter of compartment, in metres.
maxP: Maximum value of *p* for this neuron.
maxG: Maximum value of *g* for this neuron.
maxL: Maximum value of *L* for this neuron.






	The expression for the spacing field must evaluate to > 0 for the spine to be installed. For example, if the expresssion is

	H(1 - L)





then the systemwill only put spines closer than one length constant from the soma, and zero elsewhere.
Available spine parameters are:
spacing, minSpacing, size, sizeDistrib angle, angleDistrib






	
compartmentsFromExpression

	string,vector<ObjId> (lookup field)      Vector of ObjIds of electrical compartments that match the ‘path expression’ pair in the argument string.






	
valuesFromExpression

	string,vector<double> (lookup field)      Vector of values computed for each electrical compartment that matches the ‘path expression’ pair in the argument string.This has 13 times the number of entries as # of compartments.For each compartment the entries are:
val, p, g, L, len, dia, maxP, maxG, maxL, x, y, z, 0






	
spinesFromExpression

	string,vector<ObjId> (lookup field)      Vector of ObjIds of compartments comprising spines/heads that match the ‘path expression’ pair in the argument string.






	
spinesOnCompartment

	ObjId,vector<ObjId> (lookup field)      Vector of ObjIds of spines shafts/heads sitting on the specified electrical compartment. If each spine has a shaft and a head,and there are 10 spines on the compartment, there will be 20 entries in the returned vector, ordered shaft0, head0, shaft1, head1, …






	
parentCompartmentOfSpine

	ObjId,ObjId (lookup field)      Returns parent compartment of specified spine compartment.Both the spine head or its shaft will return the same parent.













          

      

      

    

  

    
      
          
            
  
Neutral


	
class Neutral

	Neutral: Base class for all MOOSE classes. Providesaccess functions for housekeeping fields and operations, messagetraversal, and so on.


	
parentMsg()

	(destination message field)      Message from Parent Element(s)






	
setThis()

	(destination message field)      Assigns field value.






	
getThis()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setName()

	(destination message field)      Assigns field value.






	
getName()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getMe()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getParent()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getChildren()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getPath()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getClassName()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNumData()

	(destination message field)      Assigns field value.






	
getNumData()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNumField()

	(destination message field)      Assigns field value.






	
getNumField()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getIdValue()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getIndex()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getFieldIndex()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTick()

	(destination message field)      Assigns field value.






	
getTick()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getDt()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getValueFields()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getSourceFields()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getDestFields()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getMsgOut()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getMsgIn()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNeighbors()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getMsgDests()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getMsgDestFunctions()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getIsA()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
childOut

	int (source message field)      Message to child Elements






	
this

	Neutral (value field)      Access function for entire object






	
name

	string (value field)      Name of object






	
me

	ObjId (value field)      ObjId for current object






	
parent

	ObjId (value field)      Parent ObjId for current object






	
children

	vector<Id> (value field)      vector of ObjIds listing all children of current object






	
path

	string (value field)      text path for object






	
className

	string (value field)      Class Name of object






	
numData

	unsigned int (value field)      # of Data entries on Element.Note that on a FieldElement this does NOT refer to field entries,but to the number of DataEntries on the parent of the FieldElement.






	
numField

	unsigned int (value field)      For a FieldElement: number of entries of self.For a regular Element: One.






	
idValue

	unsigned int (value field)      Object id of self, converted to an unsigned int.






	
index

	unsigned int (value field)      For a FieldElement: Object index of parent.For a regular Element: Object index (dataId) of self.






	
fieldIndex

	unsigned int (value field)      For a FieldElement: field Index of self.For a regular Element: zero.






	
tick

	int (value field)      Clock tick for this Element for periodic execution in the main simulation event loop. A default is normally assigned, based on object class, but one can override to any value between 0 and 19. Assigning to -1 means that the object is disabled and will not be called during simulation execution The actual timestep (dt) belonging to a clock tick is defined by the Clock object.






	
dt

	double (value field)      Timestep used for this Element. Zero if not scheduled.






	
valueFields

	vector<string> (value field)      List of all value fields on Element.These fields are accessed through the assignment operations in the Python interface.These fields may also be accessed as functions through the set<FieldName> and get<FieldName> commands.






	
sourceFields

	vector<string> (value field)      List of all source fields on Element, that is fields that can act as message sources.






	
destFields

	vector<string> (value field)      List of all destination fields on Element, that is, fieldsthat are accessed as Element functions.






	
msgOut

	vector<ObjId> (value field)      Messages going out from this Element






	
msgIn

	vector<ObjId> (value field)      Messages coming in to this Element






	
neighbors

	string,vector<Id> (lookup field)      Ids of Elements connected this Element on specified field.






	
msgDests

	string,vector<ObjId> (lookup field)      ObjIds receiving messages from the specified SrcFinfo






	
msgDestFunctions

	string,vector<string> (lookup field)      Matching function names for each ObjId receiving a msg from the specified SrcFinfo






	
isA

	string,bool (lookup field)      Returns true if the current object is derived from the specified the specified class













          

      

      

    

  

    
      
          
            
  
NormalRng


	
class NormalRng

	Normally distributed random number generator.


	
setMean()

	(destination message field)      Assigns field value.






	
getMean()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setVariance()

	(destination message field)      Assigns field value.






	
getVariance()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setMethod()

	(destination message field)      Assigns field value.






	
getMethod()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
mean

	double (value field)      Mean of the normal distribution






	
variance

	double (value field)      Variance of the normal distribution






	
method

	int (value field)      Algorithm used for computing the sample. The default is 0 = alias method by Ahrens and Dieter. Other options are: 1 = Box-Mueller method and 2 = ziggurat method.













          

      

      

    

  

    
      
          
            
  
OneToAllMsg


	
class OneToAllMsg

	
	
setI1()

	(destination message field)      Assigns field value.






	
getI1()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
i1

	unsigned int (value field)      DataId of source Element.













          

      

      

    

  

    
      
          
            
  
PIDController


	
class PIDController

	PID feedback controller.PID stands for Proportional-Integral-Derivative. It is used to feedback control dynamical systems. It tries to create a feedback output such that the sensed (measured) parameter is held at command value. Refer to wikipedia (http://wikipedia.org) for details on PID Controller.


	
proc

	void (shared message field)      This is a shared message to receive Process messages from the scheduler objects.The first entry in the shared msg is a MsgDest for the Process operation. It has a single argument, ProcInfo, which holds lots of information about current time, thread, dt and so on. The second entry is a MsgDest for the Reinit operation. It also uses ProcInfo.






	
setGain()

	(destination message field)      Assigns field value.






	
getGain()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSaturation()

	(destination message field)      Assigns field value.






	
getSaturation()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCommand()

	(destination message field)      Assigns field value.






	
getCommand()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getSensed()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTauI()

	(destination message field)      Assigns field value.






	
getTauI()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTauD()

	(destination message field)      Assigns field value.






	
getTauD()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getOutputValue()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getError()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getIntegral()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getDerivative()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getE_previous()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
commandIn()

	(destination message field)      Command (desired value) input. This is known as setpoint (SP) in control theory.






	
sensedIn()

	(destination message field)      Sensed parameter - this is the one to be tuned. This is known as process variable (PV) in control theory. This comes from the process we are trying to control.






	
gainDest()

	(destination message field)      Destination message to control the PIDController gain dynamically.






	
process()

	(destination message field)      Handle process calls.






	
reinit()

	(destination message field)      Reinitialize the object.






	
output

	double (source message field)      Sends the output of the PIDController. This is known as manipulated variable (MV) in control theory. This should be fed into the process which we are trying to control.






	
gain

	double (value field)      This is the proportional gain (Kp). This tuning parameter scales the proportional term. Larger gain usually results in faster response, but too much will lead to instability and oscillation.






	
saturation

	double (value field)      Bound on the permissible range of output. Defaults to maximum double value.






	
command

	double (value field)      The command (desired) value of the sensed parameter. In control theory this is commonly known as setpoint(SP).






	
sensed

	double (value field)      Sensed (measured) value. This is commonly known as process variable(PV) in control theory.






	
tauI

	double (value field)      The integration time constant, typically = dt. This is actually proportional gain divided by integral gain (Kp/Ki)). Larger Ki (smaller tauI) usually leads to fast elimination of steady state errors at the cost of larger overshoot.






	
tauD

	double (value field)      The differentiation time constant, typically = dt / 4. This is derivative gain (Kd) times proportional gain (Kp). Larger Kd (tauD) decreases overshoot at the cost of slowing down transient response and may lead to instability.






	
outputValue

	double (value field)      Output of the PIDController. This is given by:      gain * ( error + INTEGRAL[ error dt ] / tau_i   + tau_d * d(error)/dt )
Where gain = proportional gain (Kp), tau_i = integral gain (Kp/Ki) and tau_d = derivative gain (Kd/Kp). In control theory this is also known as the manipulated variable (MV)






	
error

	double (value field)      The error term, which is the difference between command and sensed value.






	
integral

	double (value field)      The integral term. It is calculated as INTEGRAL(error dt) = previous_integral + dt * (error + e_previous)/2.






	
derivative

	double (value field)      The derivative term. This is (error - e_previous)/dt.






	
e_previous

	double (value field)      The error term for previous step.













          

      

      

    

  

    
      
          
            
  
PoissonRng


	
class PoissonRng

	Poisson distributed random number generator.


	
setMean()

	(destination message field)      Assigns field value.






	
getMean()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
mean

	double (value field)      Mean of the Poisson distribution.













          

      

      

    

  

    
      
          
            
  
Pool


	
class Pool

	
	
increment()

	(destination message field)      Increments mol numbers by specified amount. Can be +ve or -ve






	
decrement()

	(destination message field)      Decrements mol numbers by specified amount. Can be +ve or -ve






	
nIn()

	(destination message field)      Set the number of molecules by specified amount













          

      

      

    

  

    
      
          
            
  
PoolBase


	
class PoolBase

	Abstract base class for pools.


	
reac

	void (shared message field)      Connects to reaction






	
proc

	void (shared message field)      Shared message for process and reinit






	
species

	void (shared message field)      Shared message for connecting to species objects






	
setN()

	(destination message field)      Assigns field value.






	
getN()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNInit()

	(destination message field)      Assigns field value.






	
getNInit()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDiffConst()

	(destination message field)      Assigns field value.






	
getDiffConst()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setMotorConst()

	(destination message field)      Assigns field value.






	
getMotorConst()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setConc()

	(destination message field)      Assigns field value.






	
getConc()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setConcInit()

	(destination message field)      Assigns field value.






	
getConcInit()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setVolume()

	(destination message field)      Assigns field value.






	
getVolume()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSpeciesId()

	(destination message field)      Assigns field value.






	
getSpeciesId()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
reacDest()

	(destination message field)      Handles reaction input






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
handleMolWt()

	(destination message field)      Separate finfo to assign molWt, and consequently diffusion const.Should only be used in SharedMsg with species.






	
nOut

	double (source message field)      Sends out # of molecules in pool on each timestep






	
requestMolWt

	void (source message field)      Requests Species object for mol wt






	
n

	double (value field)      Number of molecules in pool






	
nInit

	double (value field)      Initial value of number of molecules in pool






	
diffConst

	double (value field)      Diffusion constant of molecule






	
motorConst

	double (value field)      Motor transport rate molecule. + is away from soma, - is towards soma. Only relevant for ZombiePool subclasses.






	
conc

	double (value field)      Concentration of molecules in this pool






	
concInit

	double (value field)      Initial value of molecular concentration in pool






	
volume

	double (value field)      Volume of compartment. Units are SI. Utility field, the actual volume info is stored on a volume mesh entry in the parent compartment.This mapping is implicit: the parent compartment must be somewhere up the element tree, and must have matching mesh entries. If the compartment isn’tavailable the volume is just taken as 1






	
speciesId

	unsigned int (value field)      Species identifier for this mol pool. Eventually link to ontology.













          

      

      

    

  

    
      
          
            
  
PostMaster


	
class PostMaster

	
	
proc

	void (shared message field)      Shared message for process and reinit






	
getNumNodes()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getMyNode()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setBufferSize()

	(destination message field)      Assigns field value.






	
getBufferSize()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
numNodes

	unsigned int (value field)      Returns number of nodes that simulation runs on.






	
myNode

	unsigned int (value field)      Returns index of current node.






	
bufferSize

	unsigned int (value field)      Size of the send a receive buffers for each node.













          

      

      

    

  

    
      
          
            
  
PsdMesh


	
class PsdMesh

	
	
setThickness()

	(destination message field)      Assigns field value.






	
getThickness()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNeuronVoxel()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getElecComptMap()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getElecComptList()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getStartVoxelInCompt()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getEndVoxelInCompt()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
psdList()

	(destination message field)      Specifies the geometry of the spine,and the associated parent voxelArguments: disk params vector with 8 entries per psd, vector of Ids of electrical compts mapped to voxels, parent voxel index






	
thickness

	double (value field)      An assumed thickness for PSD. The volume is computed as thePSD area passed in to each PSD, times this value.defaults to 50 nanometres. For reference, membranes are 5 nm.






	
neuronVoxel

	vector<unsigned int> (value field)      Vector of indices of voxels on parent NeuroMesh, from which the respective spines emerge.






	
elecComptMap

	vector<Id> (value field)      Vector of Ids of electrical compartments that map to each voxel. This is necessary because the order of the IDs may differ from the ordering of the voxels. Note that there is always just one voxel per PSD.






	
elecComptList

	vector<Id> (value field)      Vector of Ids of all electrical compartments in this PsdMesh. Ordering is as per the tree structure built in the NeuroMesh, and may differ from Id order. Ordering matches that used for startVoxelInCompt and endVoxelInCompt






	
startVoxelInCompt

	vector<unsigned int> (value field)      Index of first voxel that maps to each electrical compartment. This is a trivial function in the PsdMesh, aswe have a single voxel per spine. So just a vector of its own indices.






	
endVoxelInCompt

	vector<unsigned int> (value field)      Index of end voxel that maps to each electrical compartment. Since there is just one voxel per electrical compartment in the spine, this is just a vector of index+1










	
class PulseGen

	PulseGen: general purpose pulse generator. This can generate any number of pulses with specified level and duration.


	
proc

	void (shared message field)      This is a shared message to receive Process messages from the scheduler objects.The first entry in the shared msg is a MsgDest for the Process operation. It has a single argument, ProcInfo, which holds lots of information about current time, thread, dt and so on. The second entry is a MsgDest for the Reinit operation. It also uses ProcInfo.






	
getOutputValue()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setBaseLevel()

	(destination message field)      Assigns field value.






	
getBaseLevel()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setFirstLevel()

	(destination message field)      Assigns field value.






	
getFirstLevel()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setFirstWidth()

	(destination message field)      Assigns field value.






	
getFirstWidth()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setFirstDelay()

	(destination message field)      Assigns field value.






	
getFirstDelay()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSecondLevel()

	(destination message field)      Assigns field value.






	
getSecondLevel()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSecondWidth()

	(destination message field)      Assigns field value.






	
getSecondWidth()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSecondDelay()

	(destination message field)      Assigns field value.






	
getSecondDelay()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCount()

	(destination message field)      Assigns field value.






	
getCount()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTrigMode()

	(destination message field)      Assigns field value.






	
getTrigMode()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setLevel()

	(destination message field)      Assigns field value.






	
getLevel()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setWidth()

	(destination message field)      Assigns field value.






	
getWidth()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDelay()

	(destination message field)      Assigns field value.






	
getDelay()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
input()

	(destination message field)      Handle incoming input that determines gating/triggering onset. Note that although this is a double field, the underlying field is integer. So fractional part of input will be truncated






	
levelIn()

	(destination message field)      Handle level value coming from other objects






	
widthIn()

	(destination message field)      Handle width value coming from other objects






	
delayIn()

	(destination message field)      Handle delay value coming from other objects






	
process()

	(destination message field)      Handles process call, updates internal time stamp.






	
reinit()

	(destination message field)      Handles reinit call.






	
output

	double (source message field)      Current output level.






	
outputValue

	double (value field)      Output amplitude






	
baseLevel

	double (value field)      Basal level of the stimulus






	
firstLevel

	double (value field)      Amplitude of the first pulse in a sequence






	
firstWidth

	double (value field)      Width of the first pulse in a sequence






	
firstDelay

	double (value field)      Delay to start of the first pulse in a sequence






	
secondLevel

	double (value field)      Amplitude of the second pulse in a sequence






	
secondWidth

	double (value field)      Width of the second pulse in a sequence






	
secondDelay

	double (value field)      Delay to start of of the second pulse in a sequence






	
count

	unsigned int (value field)      Number of pulses in a sequence






	
trigMode

	
	unsigned int (value field)      Trigger mode for pulses in the sequence.

	0 : free-running mode where it keeps looping its output
1 : external trigger, where it is triggered by an external input (and stops after creating the first train of pulses)
2 : external gate mode, where it keeps generating the pulses in a loop as long as the input is high.










	
level

	unsigned int,double (lookup field)      Level of the pulse at specified index






	
width

	unsigned int,double (lookup field)      Width of the pulse at specified index






	
delay

	unsigned int,double (lookup field)      Delay of the pulse at specified index













          

      

      

    

  

    
      
          
            
  
PulseGen


	
class PulseGen

	PulseGen: general purpose pulse generator. This can generate any number of pulses with specified level and duration.


	
proc

	void (shared message field)      This is a shared message to receive Process messages from the scheduler objects.The first entry in the shared msg is a MsgDest for the Process operation. It has a single argument, ProcInfo, which holds lots of information about current time, thread, dt and so on. The second entry is a MsgDest for the Reinit operation. It also uses ProcInfo.






	
getOutputValue()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setBaseLevel()

	(destination message field)      Assigns field value.






	
getBaseLevel()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setFirstLevel()

	(destination message field)      Assigns field value.






	
getFirstLevel()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setFirstWidth()

	(destination message field)      Assigns field value.






	
getFirstWidth()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setFirstDelay()

	(destination message field)      Assigns field value.






	
getFirstDelay()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSecondLevel()

	(destination message field)      Assigns field value.






	
getSecondLevel()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSecondWidth()

	(destination message field)      Assigns field value.






	
getSecondWidth()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSecondDelay()

	(destination message field)      Assigns field value.






	
getSecondDelay()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCount()

	(destination message field)      Assigns field value.






	
getCount()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTrigMode()

	(destination message field)      Assigns field value.






	
getTrigMode()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setLevel()

	(destination message field)      Assigns field value.






	
getLevel()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setWidth()

	(destination message field)      Assigns field value.






	
getWidth()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDelay()

	(destination message field)      Assigns field value.






	
getDelay()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
input()

	(destination message field)      Handle incoming input that determines gating/triggering onset. Note that although this is a double field, the underlying field is integer. So fractional part of input will be truncated






	
levelIn()

	(destination message field)      Handle level value coming from other objects






	
widthIn()

	(destination message field)      Handle width value coming from other objects






	
delayIn()

	(destination message field)      Handle delay value coming from other objects






	
process()

	(destination message field)      Handles process call, updates internal time stamp.






	
reinit()

	(destination message field)      Handles reinit call.






	
output

	double (source message field)      Current output level.






	
outputValue

	double (value field)      Output amplitude






	
baseLevel

	double (value field)      Basal level of the stimulus






	
firstLevel

	double (value field)      Amplitude of the first pulse in a sequence






	
firstWidth

	double (value field)      Width of the first pulse in a sequence






	
firstDelay

	double (value field)      Delay to start of the first pulse in a sequence






	
secondLevel

	double (value field)      Amplitude of the second pulse in a sequence






	
secondWidth

	double (value field)      Width of the second pulse in a sequence






	
secondDelay

	double (value field)      Delay to start of of the second pulse in a sequence






	
count

	unsigned int (value field)      Number of pulses in a sequence






	
trigMode

	
	unsigned int (value field)      Trigger mode for pulses in the sequence.

	0 : free-running mode where it keeps looping its output
1 : external trigger, where it is triggered by an external input (and stops after creating the first train of pulses)
2 : external gate mode, where it keeps generating the pulses in a loop as long as the input is high.










	
level

	unsigned int,double (lookup field)      Level of the pulse at specified index






	
width

	unsigned int,double (lookup field)      Width of the pulse at specified index






	
delay

	unsigned int,double (lookup field)      Delay of the pulse at specified index













          

      

      

    

  

    
      
          
            
  
PyRun


	
class PyRun

	Runs Python statements from inside MOOSE.


	
proc

	void (shared message field)      This is a shared message to receive Process messages from the scheduler objects.The first entry in the shared msg is a MsgDest for the Process operation. It has a single argument, ProcInfo, which holds lots of information about current time, thread, dt and so on. The second entry is a MsgDest for the Reinit operation. It also uses ProcInfo.






	
setRunString()

	(destination message field)      Assigns field value.






	
getRunString()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setInitString()

	(destination message field)      Assigns field value.






	
getInitString()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setMode()

	(destination message field)      Assigns field value.






	
getMode()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setInputVar()

	(destination message field)      Assigns field value.






	
getInputVar()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setOutputVar()

	(destination message field)      Assigns field value.






	
getOutputVar()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
trigger()

	(destination message field)      Executes the current runString whenever a message arrives. It stores the incoming value in local variable named input_, which can be used in the runString (the underscore is added to avoid conflict with Python’s builtin function input). If debug is True, it prints the input value.






	
run()

	(destination message field)      Runs a specified string. Does not modify existing run or init strings.






	
process()

	(destination message field)      Handles process call. Runs the current runString.






	
reinit()

	(destination message field)      Handles reinit call. Runs the current initString.






	
output

	double (source message field)      Sends out the value of local variable called output. Thus, you can have Python statements which compute some value and assign it to the variable called output (which is defined at reinit call). This will be sent out to any target connected to the output field.






	
runString

	string (value field)      String to be executed at each time step.






	
initString

	string (value field)      String to be executed at initialization (reinit).






	
mode

	int (value field)      Flag to indicate whether runString should be executed for both trigger and process, or one of them






	
inputVar

	string (value field)      Name of local variable in which input balue is to be stored. Default is input_ (to avoid conflict with Python’s builtin function input).






	
outputVar

	string (value field)      Name of local variable for storing output. Default is output













          

      

      

    

  

    
      
          
            
  
QIF


	
class QIF

	Leaky Integrate-and-Fire neuron with Quadratic term in Vm.Based on Spiking Neuron Models book by Gerstner and Kistler.Rm*Cm * dVm/dt = a0*(Vm-Em)*(Vm-vCritical) + Rm*I


	
setVCritical()

	(destination message field)      Assigns field value.






	
getVCritical()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setA0()

	(destination message field)      Assigns field value.






	
getA0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
vCritical

	double (value field)      Critical voltage for spike initiation






	
a0

	double (value field)      Parameter in Rm*Cm dVm/dt = a0*(Vm-Em)*(Vm-vCritical) + Rm*I, a0>0













          

      

      

    

  

    
      
          
            
  
RandGenerator


	
class RandGenerator

	Base class for random number generators for sampling various probability distributions. This class should not be used directly. Instead, its subclasses named after specific distributions should be used.


	
proc

	void (shared message field)      Shared message for process and reinit






	
getSample()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getMean()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getVariance()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
process()

	(destination message field)      Handles process call, updates internal time stamp.






	
reinit()

	(destination message field)      Handles reinit call.






	
output

	double (source message field)      Generated random number.






	
sample

	double (value field)      Generated pseudorandom number.






	
mean

	double (value field)      Mean of the distribution.






	
variance

	double (value field)      Variance of the distribution.













          

      

      

    

  

    
      
          
            
  
RandSpike


	
class RandSpike

	RandSpike object, generates random spikes at.specified mean rate. Based closely on GENESIS randspike.


	
proc

	void (shared message field)      Shared message to receive Process message from scheduler






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
setRate()

	(destination message field)      Assigns field value.






	
getRate()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setRefractT()

	(destination message field)      Assigns field value.






	
getRefractT()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setAbs_refract()

	(destination message field)      Assigns field value.






	
getAbs_refract()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getHasFired()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
spikeOut

	double (source message field)      Sends out a trigger for an event.






	
rate

	double (value field)      Specifies rate for random spike train. Note that this isprobabilistic, so the instantaneous rate may differ. If the rate is assigned be message and it varies slowly then the average firing rate will approach the specified rate






	
refractT

	double (value field)      Refractory Time.






	
abs_refract

	double (value field)      Absolute refractory time. Synonym for refractT.






	
hasFired

	bool (value field)      True if RandSpike has just fired













          

      

      

    

  

    
      
          
            
  
ReacBase


	
class ReacBase

	Base class for reactions. Provides the MOOSE APIfunctions, but ruthlessly refers almost all of them to derivedclasses, which have to provide the man page output.


	
sub

	void (shared message field)      Connects to substrate pool






	
prd

	void (shared message field)      Connects to substrate pool






	
proc

	void (shared message field)      Shared message for process and reinit






	
setNumKf()

	(destination message field)      Assigns field value.






	
getNumKf()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNumKb()

	(destination message field)      Assigns field value.






	
getNumKb()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setKf()

	(destination message field)      Assigns field value.






	
getKf()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setKb()

	(destination message field)      Assigns field value.






	
getKb()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumSubstrates()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumProducts()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
subDest()

	(destination message field)      Handles # of molecules of substrate






	
prdDest()

	(destination message field)      Handles # of molecules of product






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
subOut

	double,double (source message field)      Sends out increment of molecules on product each timestep






	
prdOut

	double,double (source message field)      Sends out increment of molecules on product each timestep






	
numKf

	double (value field)      Forward rate constant, in # units






	
numKb

	double (value field)      Reverse rate constant, in # units






	
Kf

	double (value field)      Forward rate constant, in concentration units






	
Kb

	double (value field)      Reverse rate constant, in concentration units






	
numSubstrates

	unsigned int (value field)      Number of substrates of reaction






	
numProducts

	unsigned int (value field)      Number of products of reaction













          

      

      

    

  

    
      
          
            
  
STDPSynHandler


	
class STDPSynHandler

	The STDPSynHandler handles synapses with spike timing dependent plasticity (STDP). It uses two priority queues to manage pre and post spikes.


	
setNumSynapse()

	(destination message field)      Assigns number of field entries in field array.






	
getNumSynapse()

	(destination message field)      Requests number of field entries in field array.The requesting Element must provide a handler for the returned value.






	
addPostSpike()

	(destination message field)      Handles arriving spike messages from post-synaptic neuron, inserts into postEvent queue.






	
setAMinus0()

	(destination message field)      Assigns field value.






	
getAMinus0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setAMinus()

	(destination message field)      Assigns field value.






	
getAMinus()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTauMinus()

	(destination message field)      Assigns field value.






	
getTauMinus()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setAPlus0()

	(destination message field)      Assigns field value.






	
getAPlus0()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTauPlus()

	(destination message field)      Assigns field value.






	
getTauPlus()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setWeightMax()

	(destination message field)      Assigns field value.






	
getWeightMax()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setWeightMin()

	(destination message field)      Assigns field value.






	
getWeightMin()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
aMinus0

	double (value field)      aMinus0 is added to aMinus on every pre-spike






	
aMinus

	double (value field)      aMinus is a post-synaptic variable that keeps a decaying ‘history’ of previous post-spike(s)and is used to update the synaptic weight when a pre-synaptic spike appears.It determines the t_pre > t_post (pre after post) part of the STDP window.






	
tauMinus

	double (value field)      aMinus decays with tauMinus time constant






	
aPlus0

	double (value field)      aPlus0 is added to aPlus on every pre-spike






	
tauPlus

	double (value field)      aPlus decays with tauPlus time constant






	
weightMax

	double (value field)      an upper bound on the weight






	
weightMin

	double (value field)      a lower bound on the weight













          

      

      

    

  

    
      
          
            
  
STDPSynapse


	
class STDPSynapse

	Subclass of Synapse including variables for Spike Timing Dependent Plasticity (STDP).


	
setAPlus()

	(destination message field)      Assigns field value.






	
getAPlus()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
aPlus

	double (value field)      aPlus is a pre-synaptic variable that keeps a decaying ‘history’ of previous pre-spike(s)and is used to update the synaptic weight when a post-synaptic spike appears.It determines the t_pre < t_post (pre before post) part of the STDP window.













          

      

      

    

  

    
      
          
            
  
SeqSynHandler


	
class SeqSynHandler

	
	The SeqSynHandler handles synapses that recognize sequentially ordered input, where the ordering is both in space and time. It assumes that the N input synapses are ordered and equally spaced along a single linear vector.

	To do this it maintains a record of recent synaptic input, for a duration of historyTime, at a time interval seqDt. SeqDt is typically longer than the simulation timestep dt for the synapse, and cannot be shorter. SeqDt should represent the characteristic time of advance of the sequence.





The SeqSynHandler uses a 2-D kernel to define how to recognize a sequence, with dependence both on space and history. This kernel is defined by the kernelEquation as a mathematical expression in x (synapse number) and t (time).It computes a vector with the local response term for each point along all inputs, by taking a 2-d convolution of the kernel with the history[time][synapse#] matrix.
The local response can affect the synapse in three ways: 1. It can sum the entire response vector, scale by the responseScale term, and send to the synapse as a steady activation. Consider this a cell-wide immediate response to a sequence that it likes.
2. It do an instantaneous scaling of the weight of each individual synapse by the corresponding entry in the response vector. It uses the weightScale term to do this. Consider this a short-term plasticity effect on specific synapses.
3. It can do long-term plasticity of each individual synapse using the matched local entries in the response vector and individual synapse history as inputs to the learning rule. This is not yet implemented.


	
setNumSynapse()

	(destination message field)      Assigns number of field entries in field array.






	
getNumSynapse()

	(destination message field)      Requests number of field entries in field array.The requesting Element must provide a handler for the returned value.






	
setKernelEquation()

	(destination message field)      Assigns field value.






	
getKernelEquation()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setKernelWidth()

	(destination message field)      Assigns field value.






	
getKernelWidth()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSeqDt()

	(destination message field)      Assigns field value.






	
getSeqDt()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setHistoryTime()

	(destination message field)      Assigns field value.






	
getHistoryTime()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setResponseScale()

	(destination message field)      Assigns field value.






	
getResponseScale()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getSeqActivation()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setWeightScale()

	(destination message field)      Assigns field value.






	
getWeightScale()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getWeightScaleVec()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getKernel()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getHistory()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
kernelEquation

	string (value field)      Equation in x and t to define kernel for sequence recognition






	
kernelWidth

	unsigned int (value field)      Width of kernel, i.e., number of synapses taking part in seq.






	
seqDt

	double (value field)      Characteristic time for advancing the sequence.






	
historyTime

	double (value field)      Duration to keep track of history of inputs to all synapses.






	
responseScale

	double (value field)      Scaling factor for sustained activation of synapse by seq






	
seqActivation

	double (value field)      Reports summed activation of synaptic channel by sequence






	
weightScale

	double (value field)      Scaling factor for weight of each synapse by response vector






	
weightScaleVec

	vector<double> (value field)      Vector of  weight scaling for each synapse






	
kernel

	vector<double> (value field)      All entries of kernel, as a linear vector






	
history

	vector<double> (value field)      All entries of history, as a linear vector













          

      

      

    

  

    
      
          
            
  
Shell


	
class Shell

	
	
setclock()

	(destination message field)      Assigns clock ticks. Args: tick#, dt






	
create()

	(destination message field)      create( class, parent, newElm, name, numData, isGlobal )






	
delete()

	(destination message field)      When applied to a regular object, this function operates on the Id (element) specified by the ObjId argument. The function deletes the entire object array on this Id, including all dataEntries on it,all its messages, and all its children. The DataIndex here is ignored, and all dataEntries are destroyed.
When applied to a message: Destroys only that one specific message identified by the full ObjId.
Args: ObjId






	
copy()

	(destination message field)      handleCopy( vector< Id > args, string newName, unsigned int nCopies, bool toGlobal, bool copyExtMsgs ):  The vector< Id > has Id orig, Id newParent, Id newElm. This function copies an Element and all its children to a new parent. May also expand out the original into nCopies copies. Normally all messages within the copy tree are also copied.  If the flag copyExtMsgs is true, then all msgs going out are also copied.






	
move()

	(destination message field)      handleMove( Id orig, Id newParent ): moves an Element to a new parent






	
addMsg()

	(destination message field)      Makes a msg. Arguments are: msgtype, src object, src field, dest object, dest field






	
quit()

	(destination message field)      Stops simulation running and quits the simulator






	
useClock()

	(destination message field)      Deals with assignment of path to a given clock. Arguments: path, field, tick number.










	
class SimpleSynHandler

	The SimpleSynHandler handles simple synapses without plasticity. It uses a priority queue to manage them.


	
setNumSynapse()

	(destination message field)      Assigns number of field entries in field array.






	
getNumSynapse()

	(destination message field)      Requests number of field entries in field array.The requesting Element must provide a handler for the returned value.













          

      

      

    

  

    
      
          
            
  
SimpleSynHandler


	
class SimpleSynHandler

	The SimpleSynHandler handles simple synapses without plasticity. It uses a priority queue to manage them.


	
setNumSynapse()

	(destination message field)      Assigns number of field entries in field array.






	
getNumSynapse()

	(destination message field)      Requests number of field entries in field array.The requesting Element must provide a handler for the returned value.













          

      

      

    

  

    
      
          
            
  
SingleMsg


	
class SingleMsg

	
	
setI1()

	(destination message field)      Assigns field value.






	
getI1()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setI2()

	(destination message field)      Assigns field value.






	
getI2()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
i1

	unsigned int (value field)      Index of source object.






	
i2

	unsigned int (value field)      Index of dest object.













          

      

      

    

  

    
      
          
            
  
SparseMsg


	
class SparseMsg

	
	
getNumRows()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumColumns()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumEntries()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setProbability()

	(destination message field)      Assigns field value.






	
getProbability()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setSeed()

	(destination message field)      Assigns field value.






	
getSeed()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setRandomConnectivity()

	(destination message field)      Assigns connectivity with specified probability and seed






	
setEntry()

	(destination message field)      Assigns single row,column value






	
unsetEntry()

	(destination message field)      Clears single row,column entry






	
clear()

	(destination message field)      Clears out the entire matrix






	
transpose()

	(destination message field)      Transposes the sparse matrix






	
pairFill()

	(destination message field)      Fills entire matrix using pairs of (x,y) indices to indicate presence of a connection. If the target is a FieldElement itautomagically assigns FieldIndices.






	
tripletFill()

	(destination message field)      Fills entire matrix using triplets of (x,y,fieldIndex) to fully specify every connection in the sparse matrix.






	
numRows

	unsigned int (value field)      Number of rows in matrix.






	
numColumns

	unsigned int (value field)      Number of columns in matrix.






	
numEntries

	unsigned int (value field)      Number of Entries in matrix.






	
probability

	double (value field)      connection probability for random connectivity.






	
seed

	long (value field)      Random number seed for generating probabilistic connectivity.













          

      

      

    

  

    
      
          
            
  
Species


	
class Species

	
	
pool

	void (shared message field)      Connects to pools of this Species type






	
setMolWt()

	(destination message field)      Assigns field value.






	
getMolWt()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
handleMolWtRequest()

	(destination message field)      Handle requests for molWt.






	
molWtOut

	double (source message field)      returns molWt.






	
molWt

	double (value field)      Molecular weight of species













          

      

      

    

  

    
      
          
            
  
SpikeGen


	
class SpikeGen

	
	SpikeGen object, for detecting threshold crossings.The threshold detection can work in multiple modes.

	If the refractT < 0.0, then it fires an event only at the rising edge of the input voltage waveform






	
proc

	void (shared message field)      Shared message to receive Process message from scheduler






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
Vm()

	(destination message field)      Handles Vm message coming in from compartment






	
setThreshold()

	(destination message field)      Assigns field value.






	
getThreshold()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setRefractT()

	(destination message field)      Assigns field value.






	
getRefractT()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setAbs_refract()

	(destination message field)      Assigns field value.






	
getAbs_refract()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getHasFired()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setEdgeTriggered()

	(destination message field)      Assigns field value.






	
getEdgeTriggered()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
spikeOut

	double (source message field)      Sends out a trigger for an event.






	
threshold

	double (value field)      Spiking threshold, must cross it going up






	
refractT

	double (value field)      Refractory Time.






	
abs_refract

	double (value field)      Absolute refractory time. Synonym for refractT.






	
hasFired

	bool (value field)      True if SpikeGen has just fired






	
edgeTriggered

	bool (value field)      When edgeTriggered = 0, the SpikeGen will fire an event in each timestep while incoming Vm is > threshold and at least abs_refracttime has passed since last event. This may be problematic if the incoming Vm remains above threshold for longer than abs_refract. Setting edgeTriggered to 1 resolves this as the SpikeGen generatesan event only on the rising edge of the incoming Vm and will remain idle unless the incoming Vm goes below threshold.










	
class SpikeStats

	Object to do some minimal stats on rate of a spike train. Derived from the Stats object and returns the same set of stats.Can take either predigested spike event input, or can handle a continuous sampling of membrane potential Vm and decide if a spike has occured based on a threshold.


	
setThreshold()

	(destination message field)      Assigns field value.






	
getThreshold()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
addSpike()

	(destination message field)      Handles spike event time input, converts into a rate to do stats upon.






	
Vm()

	(destination message field)      Handles continuous voltage input, can be coming in much than update rate of the SpikeStats. Looks for transitions above threshold to register the arrival of a spike. Doesn’t do another spike till Vm falls below threshold.






	
threshold

	double (value field)      Spiking threshold. If Vm crosses this going up then the SpikeStats object considers that a spike has happened and adds it to the stats.













          

      

      

    

  

    
      
          
            
  
SpikeStats


	
class SpikeStats

	Object to do some minimal stats on rate of a spike train. Derived from the Stats object and returns the same set of stats.Can take either predigested spike event input, or can handle a continuous sampling of membrane potential Vm and decide if a spike has occured based on a threshold.


	
setThreshold()

	(destination message field)      Assigns field value.






	
getThreshold()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
addSpike()

	(destination message field)      Handles spike event time input, converts into a rate to do stats upon.






	
Vm()

	(destination message field)      Handles continuous voltage input, can be coming in much than update rate of the SpikeStats. Looks for transitions above threshold to register the arrival of a spike. Doesn’t do another spike till Vm falls below threshold.






	
threshold

	double (value field)      Spiking threshold. If Vm crosses this going up then the SpikeStats object considers that a spike has happened and adds it to the stats.













          

      

      

    

  

    
      
          
            
  
Spine


	
class Spine

	Spine wrapper, used to change its morphology typically by a message from an adaptor. The Spine class takes care of a lot of resultant scaling to electrical, chemical, and diffusion properties.


	
setShaftLength()

	(destination message field)      Assigns field value.






	
getShaftLength()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setShaftDiameter()

	(destination message field)      Assigns field value.






	
getShaftDiameter()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setHeadLength()

	(destination message field)      Assigns field value.






	
getHeadLength()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setHeadDiameter()

	(destination message field)      Assigns field value.






	
getHeadDiameter()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setPsdArea()

	(destination message field)      Assigns field value.






	
getPsdArea()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setHeadVolume()

	(destination message field)      Assigns field value.






	
getHeadVolume()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTotalLength()

	(destination message field)      Assigns field value.






	
getTotalLength()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
shaftLength

	double (value field)      Length of spine shaft.






	
shaftDiameter

	double (value field)      Diameter of spine shaft.






	
headLength

	double (value field)      Length of spine head.






	
headDiameter

	double (value field)      Diameter of spine head, and also the diameter of the PSD.






	
psdArea

	double (value field)      Area of the Post synaptic density, PSD. This is the same as the cross-section area of spine head, perpendicular to shaft. Assumes that the head is a cylinder and that its length does not change.
This is useful to scale # of surface molecules on the PSD.






	
headVolume

	double (value field)      Volume of spine head, treating it as a cylinder. When this is scaled by the user, both the diameter and the length of the spine head scale by the cube root of the ratio to the previous volume. The diameter of the PSD is pegged to the diameter fo the spine head.
This is useful to scale total # of molecules in the head.






	
totalLength

	double (value field)      Length of entire spine. Scales both the length of the shaft and of the spine head, without changing any of the diameters.













          

      

      

    

  

    
      
          
            
  
SpineMesh


	
class SpineMesh

	
	
getParentVoxel()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNeuronVoxel()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getElecComptMap()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getElecComptList()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getStartVoxelInCompt()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getEndVoxelInCompt()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
spineList()

	(destination message field)      Specifies the list of electrical compartments for the spine,and the associated parent voxelArguments: shaft compartments, head compartments, parent voxel index






	
parentVoxel

	vector<unsigned int> (value field)      Vector of indices of proximal voxels within this mesh.Spines are at present modeled with just one compartment,so each entry in this vector is always set to EMPTY == -1U






	
neuronVoxel

	vector<unsigned int> (value field)      Vector of indices of voxels on parent NeuroMesh, from which the respective spines emerge.






	
elecComptMap

	vector<Id> (value field)      Vector of Ids of electrical compartments that map to each voxel. This is necessary because the order of the IDs may differ from the ordering of the voxels. Note that there is always just one voxel per spine head.






	
elecComptList

	vector<Id> (value field)      Vector of Ids of all electrical compartments in this SpineMesh. Ordering is as per the tree structure built in the NeuroMesh, and may differ from Id order. Ordering matches that used for startVoxelInCompt and endVoxelInCompt






	
startVoxelInCompt

	vector<unsigned int> (value field)      Index of first voxel that maps to each electrical compartment. This is a trivial function in the SpineMesh, aswe have a single voxel per spine. So just a vector of its own indices.






	
endVoxelInCompt

	vector<unsigned int> (value field)      Index of end voxel that maps to each electrical compartment. Since there is just one voxel per electrical compartment in the spine, this is just a vector of index+1













          

      

      

    

  

    
      
          
            
  
Stats


	
class Stats

	
	
proc

	void (shared message field)      Shared message for process and reinit






	
getMean()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getSdev()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getSum()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNum()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getWmean()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getWsdev()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getWsum()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getWnum()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setWindowLength()

	(destination message field)      Assigns field value.






	
getWindowLength()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
input()

	(destination message field)      Handles continuous value input as a time-series. Multiple inputs are allowed, they will be merged.






	
process()

	(destination message field)      Handles process call






	
reinit()

	(destination message field)      Handles reinit call






	
requestOut

	PSt6vectorIdSaIdEE (source message field)      Sends request for a field to target object






	
mean

	double (value field)      Mean of all sampled values or of spike rate.






	
sdev

	double (value field)      Standard Deviation of all sampled values, or of rate.






	
sum

	double (value field)      Sum of all sampled values, or total number of spikes.






	
num

	unsigned int (value field)      Number of all sampled values, or total number of spikes.






	
wmean

	double (value field)      Mean of sampled values or of spike rate within window.






	
wsdev

	double (value field)      Standard Deviation of sampled values, or rate, within window.






	
wsum

	double (value field)      Sum of all sampled values, or total number of spikes, within window.






	
wnum

	unsigned int (value field)      Number of all sampled values, or total number of spikes, within window.






	
windowLength

	unsigned int (value field)      Number of bins for windowed stats. Ignores windowing if this value is zero.













          

      

      

    

  

    
      
          
            
  
SteadyState


	
class SteadyState

	
	SteadyState: works out a steady-state value for a reaction system. This class uses the GSL multidimensional root finder algorithms to find the fixed points closest to the current molecular concentrations. When it finds the fixed points, it figures out eigenvalues of the solution, as a way to help classify the fixed points. Note that the method finds unstable as well as stable fixed points.

	The SteadyState class also provides a utility function randomInit()       to randomly initialize the concentrations, within the constraints of stoichiometry. This is useful if you are trying to find the major fixed points of the system. Note that this is probabilistic. If a fixed point is in a very narrow range of state space the probability of finding it is small and you will have to run many iterations with different initial conditions to find it.
The numerical calculations used by the SteadyState solver are prone to failing on individual calculations. All is not lost, because the system reports the solutionStatus. It is recommended that you test this field after every calculation, so you can simply ignore cases where it failed and try again with different starting conditions.
Another rule of thumb is that the SteadyState object is more likely to succeed in finding solutions from a new starting point if you numerically integrate the chemical system for a short time (typically under 1 second) before asking it to find the fixed point.






	
setStoich()

	(destination message field)      Assigns field value.






	
getStoich()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getBadStoichiometry()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getIsInitialized()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNIter()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getStatus()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setMaxIter()

	(destination message field)      Assigns field value.






	
getMaxIter()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setConvergenceCriterion()

	(destination message field)      Assigns field value.






	
getConvergenceCriterion()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumVarPools()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getRank()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getStateType()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNNegEigenvalues()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNPosEigenvalues()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getSolutionStatus()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTotal()

	(destination message field)      Assigns field value.






	
getTotal()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getEigenvalues()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setupMatrix()

	(destination message field)      This function initializes and rebuilds the matrices used in the calculation.






	
settle()

	(destination message field)      Finds the nearest steady state to the current initial conditions. This function rebuilds the entire calculation only if the object has not yet been initialized.






	
resettle()

	(destination message field)      Finds the nearest steady state to the current initial conditions. This function rebuilds the entire calculation






	
showMatrices()

	(destination message field)      Utility function to show the matrices derived for the calculations on the reaction system. Shows the Nr, gamma, and total matrices






	
randomInit()

	(destination message field)      Generate random initial conditions consistent with the massconservation rules. Typically invoked in order to scanstates






	
stoich

	Id (value field)      Specify the Id of the stoichiometry system to use






	
badStoichiometry

	bool (value field)      Bool: True if there is a problem with the stoichiometry






	
isInitialized

	bool (value field)      True if the model has been initialized successfully






	
nIter

	unsigned int (value field)      Number of iterations done by steady state solver






	
status

	string (value field)      Status of solver






	
maxIter

	unsigned int (value field)      Max permissible number of iterations to try before giving up






	
convergenceCriterion

	double (value field)      Fractional accuracy required to accept convergence






	
numVarPools

	unsigned int (value field)      Number of variable molecules in reaction system.






	
rank

	unsigned int (value field)      Number of independent molecules in reaction system






	
stateType

	unsigned int (value field)      0: stable; 1: unstable; 2: saddle; 3: osc?; 4: one near-zero eigenvalue; 5: other






	
nNegEigenvalues

	unsigned int (value field)      Number of negative eigenvalues: indicates type of solution






	
nPosEigenvalues

	unsigned int (value field)      Number of positive eigenvalues: indicates type of solution






	
solutionStatus

	unsigned int (value field)      0: Good; 1: Failed to find steady states; 2: Failed to find eigenvalues






	
total

	unsigned int,double (lookup field)      Totals table for conservation laws. The exact mapping ofthis to various sums of molecules is given by the conservation matrix, and is currently a bit opaque.The value of ‘total’ is set to initial conditions whenthe ‘SteadyState::settle’ function is called.Assigning values to the total is a special operation:it rescales the concentrations of all the affectedmolecules so that they are at the specified total.This happens the next time ‘settle’ is called.






	
eigenvalues

	unsigned int,double (lookup field)      Eigenvalues computed for steady state













          

      

      

    

  

    
      
          
            
  
StimulusTable


	
class StimulusTable

	
	
proc

	void (shared message field)      Shared message for process and reinit






	
setStartTime()

	(destination message field)      Assigns field value.






	
getStartTime()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setStopTime()

	(destination message field)      Assigns field value.






	
getStopTime()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setLoopTime()

	(destination message field)      Assigns field value.






	
getLoopTime()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setStepSize()

	(destination message field)      Assigns field value.






	
getStepSize()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setStepPosition()

	(destination message field)      Assigns field value.






	
getStepPosition()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDoLoop()

	(destination message field)      Assigns field value.






	
getDoLoop()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
process()

	(destination message field)      Handles process call, updates internal time stamp.






	
reinit()

	(destination message field)      Handles reinit call.






	
output

	double (source message field)      Sends out tabulated data according to lookup parameters.






	
startTime

	double (value field)      Start time used when table is emitting values. For lookupvalues below this, the table just sends out its zero entry.Corresponds to zeroth entry of table.






	
stopTime

	double (value field)      Time to stop emitting values.If time exceeds this, then the table sends out its last entry.The stopTime corresponds to the last entry of table.






	
loopTime

	double (value field)      If looping, this is the time between successive cycle starts.Defaults to the difference between stopTime and startTime, so that the output waveform cycles with precisely the same duration as the table contents.If larger than stopTime - startTime, then it pauses at the last table value till it is time to go around again.If smaller than stopTime - startTime, then it begins the next cycle even before the first one has reached the end of the table.






	
stepSize

	double (value field)      Increment in lookup (x) value on every timestep. If it isless than or equal to zero, the StimulusTable uses the current timeas the lookup value.






	
stepPosition

	double (value field)      Current value of lookup (x) value.If stepSize is less than or equal to zero, this is set tothe current time to use as the lookup value.






	
doLoop

	bool (value field)      Flag: Should it loop around to startTime once it has reachedstopTime. Default (zero) is to do a single pass.













          

      

      

    

  

    
      
          
            
  
Stoich


	
class Stoich

	
	
setPath()

	(destination message field)      Assigns field value.






	
getPath()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setKsolve()

	(destination message field)      Assigns field value.






	
getKsolve()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDsolve()

	(destination message field)      Assigns field value.






	
getDsolve()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setCompartment()

	(destination message field)      Assigns field value.






	
getCompartment()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumVarPools()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumBufPools()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumAllPools()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumProxyPools()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getPoolIdMap()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getNumRates()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getMatrixEntry()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getColumnIndex()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getRowStart()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getProxyPools()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getStatus()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
unzombify()

	(destination message field)      Restore all zombies to their native state






	
buildXreacs()

	(destination message field)      Build cross-reaction terms between current stoich and argument. This function scans the voxels at which there are junctions between different compartments, and orchestrates set up of interfaces between the Ksolves that implement the X reacs at those junctions.






	
filterXreacs()

	(destination message field)      Filter cross-reaction terms on current stoichThis function clears out absent rate terms that would otherwise try to compute cross reactions where the junctions are not present.






	
scaleBufsAndRates()

	(destination message field)      Args: voxel#, volRatio
Handles requests for runtime volume changes in the specified voxel#, Used in adaptors changing spine vols.






	
path

	string (value field)      Wildcard path for reaction system handled by Stoich






	
ksolve

	Id (value field)      Id of Kinetic reaction solver class that works with this Stoich.  Must be of class Ksolve, or Gsolve (at present)  Must be assigned before the path is set.






	
dsolve

	Id (value field)      Id of Diffusion solver class that works with this Stoich. Must be of class Dsolve  If left unset then the system will be assumed to work in a non-diffusive, well-stirred cell. If it is going to be  used it must be assigned before the path is set.






	
compartment

	Id (value field)      Id of chemical compartment class that works with this Stoich. Must be derived from class ChemCompt. If left unset then the system will be assumed to work in a non-diffusive, well-stirred cell. If it is going to be  used it must be assigned before the path is set.






	
numVarPools

	unsigned int (value field)      Number of time-varying pools to be computed by the numerical engine






	
numBufPools

	unsigned int (value field)      Number of buffered pools to be computed by the numerical engine. Includes pools controlled by functions.






	
numAllPools

	unsigned int (value field)      Total number of pools handled by the numerical engine. This includes variable ones, buffered ones, and functions. It includes local pools as well as cross-solver proxy pools.






	
numProxyPools

	unsigned int (value field)      Number of pools here by proxy as substrates of a cross-compartment reaction.






	
poolIdMap

	vector<unsigned int> (value field)      Map to look up the index of the pool from its Id.poolIndex = poolIdMap[ Id::value() - poolOffset ] where the poolOffset is the smallest Id::value. poolOffset is passed back as the last entry of this vector. Any Ids that are not pools return EMPTY=~0.






	
numRates

	unsigned int (value field)      Total number of rate terms in the reaction system.






	
matrixEntry

	vector<int> (value field)      The non-zero matrix entries in the sparse matrix. Theircolumn indices are in a separate vector and the rowinformatino in a third






	
columnIndex

	vector<unsigned int> (value field)      Column Index of each matrix entry






	
rowStart

	vector<unsigned int> (value field)      Row start for each block of entries and column indices






	
status

	
	int (value field)      Status of Stoich in the model building process. Values are: -1: Reaction path not yet assigned.

	0: Successfully built stoichiometry matrix.
1: Warning: Missing a reactant in a Reac or Enz.
2: Warning: Missing a substrate in an MMenz.
3: Warning: Missing substrates as well as reactants.
4: Warning: Compartment not defined.
8: Warning: Neither Ksolve nor Dsolve defined.
16: Warning: No objects found on path.










	
proxyPools

	Id,vector<Id> (lookup field)      Return vector of proxy pools for X-compt reactions between current stoich, and the argument, which is a StoichId. The returned pools belong to the compartment handling the Stoich specified in the argument. If no pools are found, return an empty vector.













          

      

      

    

  

    
      
          
            
  
Streamer


	
class Streamer

	Streamer: Stream moose.Table data to out-streams


	
proc

	void (shared message field)      Shared message for process and reinit






	
setOutfile()

	(destination message field)      Assigns field value.






	
getOutfile()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setFormat()

	(destination message field)      Assigns field value.






	
getFormat()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
process()

	(destination message field)      Handle process call






	
reinit()

	(destination message field)      Handles reinit call






	
addTable()

	(destination message field)      Add a table to Streamer






	
addTables()

	(destination message field)      Add many tables to Streamer






	
removeTable()

	(destination message field)      Remove a table from Streamer






	
removeTables()

	(destination message field)      Remove tables – if found – from Streamer






	
getNumTables()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
outfile

	string (value field)      File/stream to write table data to. Default is is __moose_tables__.dat.n By default, this object writes data every second






	
format

	string (value field)      Format of output file, default is csv






	
numTables

	unsigned long (value field)      Number of Tables handled by Streamer













          

      

      

    

  

    
      
          
            
  
SymCompartment


	
class SymCompartment

	SymCompartment object, for branching neuron models. In symmetric
compartments the axial resistance is equally divided on two sides of
the node. The equivalent circuit of the passive compartment becomes:
(NOTE: you must use a fixed-width font like Courier for correct rendition of the diagrams below):

  Ra/2    B    Ra/2
A-/\/\/\\_\_\_\_\_/\/\/\-- C
          |
      \_\_\_\_|\_\_\_\_
     |         |
     |         \
     |         / Rm
    ---- Cm    \
    ----       /
     |         |
     |       \_\_\_\_\_
     |        ---  Em
     |\_\_\_\_\_\_\_\_\_|
         |
       \_\_|\_\_
       /////





In case of branching, the B-C part of the parent’s axial resistance
forms a Y with the A-B part of the children:

                             B'
                             |
                             /
                             \
                             /
                             \
                             /
                             |A'
              B              |
A-----/\/\/\-----/\/\/\------|C
                             |
                             |A"
                             /
                             \
                             /
                             \
                             /
                             |
                             B"





As per basic circuit analysis techniques, the C node is replaced using
star-mesh transform. This requires all sibling compartments at a
branch point to be connected via ‘sibling’ messages by the user (or
by the cell reader in case of prototypes). For the same reason, the
child compartment must be connected to the parent by
distal-proximal message pair. The calculation of the
coefficient for computing equivalent resistances in the mesh is done
at reinit.


	
proximal

	void (shared message field)      This is a shared message between symmetric compartments.
It goes from the proximal end of the current compartment to
distal end of the compartment closer to the soma.






	
distal

	void (shared message field)      This is a shared message between symmetric compartments.
It goes from the distal end of the current compartment to the
proximal end of one further from the soma.
The Ra values collected from children and
sibling nodes are used for computing the equivalent resistance
between each pair of nodes using star-mesh transformation.
Mathematically this is the same as the proximal message, but
the distinction is important for traversal and clarity.






	
sibling

	void (shared message field)      This is a shared message between symmetric compartments.
Conceptually, this goes from the proximal end of the current
compartment to the proximal end of a sibling compartment
on a branch in a dendrite. However,
this works out to the same as a ‘distal’ message in terms of
equivalent circuit.  The Ra values collected from siblings
and parent node are used for
computing the equivalent resistance between each pair of
nodes using star-mesh transformation.






	
sphere

	void (shared message field)      This is a shared message between a spherical compartment
(typically soma) and a number of evenly spaced cylindrical
compartments, typically primary dendrites.
The sphere contributes the usual Ra/2 to the resistance
between itself and children. The child compartments
do not connect across to each other
through sibling messages. Instead they just connect to the soma
through the ‘proximalOnly’ message






	
cylinder

	void (shared message field)      This is a shared message between a cylindrical compartment
(typically a dendrite) and a number of evenly spaced child
compartments, typically dendritic spines, protruding from the
curved surface of the cylinder. We assume that the resistance
from the cylinder curved surface to its axis is negligible.
The child compartments do not need to connect across to each
other through sibling messages. Instead they just connect to the
parent dendrite through the ‘proximalOnly’ message






	
proximalOnly

	void (shared message field)      This is a shared message between a dendrite and a parent
compartment whose offspring are spatially separated from each
other. For example, evenly spaced dendrites emerging from a soma
or spines emerging from a common parent dendrite. In these cases
the sibling dendrites do not need to connect to each other
through ‘sibling’ messages. Instead they just connect to the
parent compartment (soma or dendrite) through this message






	
raxialSym()

	(destination message field)      Expects Ra and Vm from other compartment.






	
sumRaxial()

	(destination message field)      Expects Ra from other compartment.






	
raxialSym()

	(destination message field)      Expects Ra and Vm from other compartment.






	
sumRaxial()

	(destination message field)      Expects Ra from other compartment.






	
raxialSym()

	(destination message field)      Expects Ra and Vm from other compartment.






	
sumRaxial()

	(destination message field)      Expects Ra from other compartment.






	
raxialSphere()

	(destination message field)      Expects Ra and Vm from other compartment. This is a special case when other compartments are evenly distributed on a spherical compartment.






	
raxialCylinder()

	(destination message field)      Expects Ra and Vm from other compartment. This is a special case when other compartments are evenly distributed on the curved surface of the cylindrical compartment, so we assume that the cylinder does not add any further resistance.






	
raxialSphere()

	(destination message field)      Expects Ra and Vm from other compartment. This is a special case when other compartments are evenly distributed on a spherical compartment.






	
proximalOut

	double,double (source message field)      Sends out Ra and Vm on each timestep, on the proximal end of a compartment. That is, this end should be  pointed toward the soma. Mathematically the same as raxialOut but provides a logical orientation of the dendrite. One can traverse proximalOut messages to get to the soma.






	
sumRaxialOut

	double (source message field)      Sends out Ra






	
distalOut

	double,double (source message field)      Sends out Ra and Vm on each timestep, on the distal end of a compartment. This end should be pointed away from the soma. Mathematically the same as proximalOut, but gives an orientation to the dendrite and helps traversal.






	
sumRaxialOut

	double (source message field)      Sends out Ra






	
distalOut

	double,double (source message field)      Sends out Ra and Vm on each timestep, on the distal end of a compartment. This end should be pointed away from the soma. Mathematically the same as proximalOut, but gives an orientation to the dendrite and helps traversal.






	
sumRaxialOut

	double (source message field)      Sends out Ra






	
distalOut

	double,double (source message field)      Sends out Ra and Vm on each timestep, on the distal end of a compartment. This end should be pointed away from the soma. Mathematically the same as proximalOut, but gives an orientation to the dendrite and helps traversal.






	
cylinderOut

	double,double (source message field)       Sends out Ra and Vm to compartments (typically spines) on the curved surface of a cylinder. Ra is set to nearly zero, since we assume that the resistance from axis to surface is negligible.






	
proximalOut

	double,double (source message field)      Sends out Ra and Vm on each timestep, on the proximal end of a compartment. That is, this end should be  pointed toward the soma. Mathematically the same as raxialOut but provides a logical orientation of the dendrite. One can traverse proximalOut messages to get to the soma.













          

      

      

    

  

    
      
          
            
  
SynChan


	
class SynChan

	SynChan: Synaptic channel incorporating  weight and delay. Does not handle actual arrival of synaptic  events, that is done by one of the derived classes of SynHandlerBase.
In use, the SynChan sits on the compartment connected to it by the channel message. One or more of the SynHandler objects connects to the SynChan through the activation message. The SynHandlers each manage multiple synapses, and the handlers can be fixed weight or have a learning rule.


	
setTau1()

	(destination message field)      Assigns field value.






	
getTau1()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTau2()

	(destination message field)      Assigns field value.






	
getTau2()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setNormalizeWeights()

	(destination message field)      Assigns field value.






	
getNormalizeWeights()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
activation()

	(destination message field)      Sometimes we want to continuously activate the channel






	
tau1

	double (value field)      Decay time constant for the synaptic conductance, tau1 >= tau2.






	
tau2

	double (value field)      Rise time constant for the synaptic conductance, tau1 >= tau2.






	
normalizeWeights

	bool (value field)      Flag. If true, the overall conductance is normalized by the number of individual synapses in this SynChan object.













          

      

      

    

  

    
      
          
            
  
SynHandlerBase


	
class SynHandlerBase

	Base class for handling synapse arrays converging onto a given channel or integrate-and-fire neuron. This class provides the interface for channels/intFires to connect to a range of synapse types, including simple synapses, synapses with different plasticity rules, and variants yet to be implemented.


	
proc

	void (shared message field)      Shared Finfo to receive Process messages from the clock.






	
setNumSynapses()

	(destination message field)      Assigns field value.






	
getNumSynapses()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
process()

	(destination message field)      Handles ‘process’ call. Checks if any spike events are due forhandling at this timestep, and does learning rule stuff if needed






	
reinit()

	(destination message field)      Handles ‘reinit’ call. Initializes all the synapses.






	
activationOut

	double (source message field)      Sends out level of activation on all synapses converging to this SynHandler






	
numSynapses

	unsigned int (value field)      Number of synapses on SynHandler. Duplicate field for num_synapse













          

      

      

    

  

    
      
          
            
  
Synapse


	
class Synapse

	Synapse using ring buffer for events.


	
setWeight()

	(destination message field)      Assigns field value.






	
getWeight()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setDelay()

	(destination message field)      Assigns field value.






	
getDelay()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
addSpike()

	(destination message field)      Handles arriving spike messages, inserts into event queue.






	
weight

	double (value field)      Synaptic weight






	
delay

	double (value field)      Axonal propagation delay to this synapse













          

      

      

    

  

    
      
          
            
  
Table


	
class Table

	Table for accumulating data values, or spike timings. Can either receive incoming doubles, or can explicitly request values from fields provided they are doubles. The latter mode of use is preferable if you wish to have independent control of how often you sample from the output variable.
Typically used for storing simulation output into memory, or to file when stream is set to True
There are two functionally identical variants of the Table class: Table and Table2. Their only difference is that the default scheduling of the Table (Clock Tick 8, dt = 0.1 ms ) makes it suitable for tracking electrical compartmental models of neurons and networks.
Table2 (Clock Tick 18, dt = 1.0 s) is good for tracking biochemical signaling pathway outputs.
These are just the default values and Tables can be assigned to any Clock Tick and timestep in the usual manner.


	
proc

	void (shared message field)      Shared message for process and reinit






	
setThreshold()

	(destination message field)      Assigns field value.






	
getThreshold()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setFormat()

	(destination message field)      Assigns field value.






	
getFormat()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setName()

	(destination message field)      Assigns field value.






	
getName()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setOutfile()

	(destination message field)      Assigns field value.






	
getOutfile()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setUseStreamer()

	(destination message field)      Assigns field value.






	
getUseStreamer()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
input()

	(destination message field)      Fills data into table. Also handles data sent back following request






	
spike()

	(destination message field)      Fills spike timings into the Table. Signal has to exceed thresh






	
process()

	(destination message field)      Handles process call, updates internal time stamp.






	
reinit()

	(destination message field)      Handles reinit call.






	
requestOut

	PSt6vectorIdSaIdEE (source message field)      Sends request for a field to target object






	
threshold

	double (value field)      threshold used when Table acts as a buffer for spikes






	
format

	string (value field)      Data format for table: default csv






	
name

	string (value field)      Name of the table.






	
outfile

	string (value field)      Set the name of file to which data is written to. If set,  streaming support is automatically enabled.






	
useStreamer

	bool (value field)      When set to true, write to a file instead writing in memory. If outfile is not set, streamer writes to default path.













          

      

      

    

  

    
      
          
            
  
Table2


	
class Table2

	Table for accumulating data values, or spike timings. Can either receive incoming doubles, or can explicitly request values from fields provided they are doubles. The latter mode of use is preferable if you wish to have independent control of how often you sample from the output variable.
Typically used for storing simulation output into memory, or to file when stream is set to True
There are two functionally identical variants of the Table class: Table and Table2. Their only difference is that the default scheduling of the Table (Clock Tick 8, dt = 0.1 ms ) makes it suitable for tracking electrical compartmental models of neurons and networks.
Table2 (Clock Tick 18, dt = 1.0 s) is good for tracking biochemical signaling pathway outputs.
These are just the default values and Tables can be assigned to any Clock Tick and timestep in the usual manner.


	
proc

	void (shared message field)      Shared message for process and reinit






	
setThreshold()

	(destination message field)      Assigns field value.






	
getThreshold()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setFormat()

	(destination message field)      Assigns field value.






	
getFormat()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setName()

	(destination message field)      Assigns field value.






	
getName()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setOutfile()

	(destination message field)      Assigns field value.






	
getOutfile()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setUseStreamer()

	(destination message field)      Assigns field value.






	
getUseStreamer()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
input()

	(destination message field)      Fills data into table. Also handles data sent back following request






	
spike()

	(destination message field)      Fills spike timings into the Table. Signal has to exceed thresh






	
process()

	(destination message field)      Handles process call, updates internal time stamp.






	
reinit()

	(destination message field)      Handles reinit call.






	
requestOut

	PSt6vectorIdSaIdEE (source message field)      Sends request for a field to target object






	
threshold

	double (value field)      threshold used when Table acts as a buffer for spikes






	
format

	string (value field)      Data format for table: default csv






	
name

	string (value field)      Name of the table.






	
outfile

	string (value field)      Set the name of file to which data is written to. If set,  streaming support is automatically enabled.






	
useStreamer

	bool (value field)      When set to true, write to a file instead writing in memory. If outfile is not set, streamer writes to default path.













          

      

      

    

  

    
      
          
            
  
TableBase


	
class TableBase

	
	
setVector()

	(destination message field)      Assigns field value.






	
getVector()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getOutputValue()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getSize()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getY()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
linearTransform()

	(destination message field)      Linearly scales and offsets data. Scale first, then offset.






	
xplot()

	(destination message field)      Dumps table contents to xplot-format file. Argument 1 is filename, argument 2 is plotname






	
plainPlot()

	(destination message field)      Dumps table contents to single-column ascii file. Uses scientific notation. Argument 1 is filename






	
loadCSV()

	(destination message field)      Reads a single column from a CSV file. Arguments: filename, column#, starting row#, separator






	
loadXplot()

	(destination message field)      Reads a single plot from an xplot file. Arguments: filename, plotnameWhen the file has 2 columns, the 2nd column is loaded.






	
loadXplotRange()

	(destination message field)      Reads a single plot from an xplot file, and selects a subset of points from it. Arguments: filename, plotname, startindex, endindexUses C convention: startindex included, endindex not included.When the file has 2 columns, the 2nd column is loaded.






	
compareXplot()

	(destination message field)      Reads a plot from an xplot file and compares with contents of TableBase.Result is put in ‘output’ field of table.If the comparison fails (e.g., due to zero entries), the return value is -1.Arguments: filename, plotname, comparison_operationOperations: rmsd (for RMSDifference), rmsr (RMSratio ), dotp (Dot product, not yet implemented).






	
compareVec()

	(destination message field)      Compares contents of TableBase with a vector of doubles.Result is put in ‘output’ field of table.If the comparison fails (e.g., due to zero entries), the return value is -1.Arguments: Other vector, comparison_operationOperations: rmsd (for RMSDifference), rmsr (RMSratio ), dotp (Dot product, not yet implemented).






	
clearVec()

	(destination message field)      Handles request to clear the data vector






	
vector

	vector<double> (value field)      vector with all table entries






	
outputValue

	double (value field)      Output value holding current table entry or output of a calculation






	
size

	unsigned int (value field)      size of table. Note that this is the number of x divisions +1since it must represent the largest value as well as thesmallest






	
y

	unsigned int,double (lookup field)      Value of table at specified index













          

      

      

    

  

    
      
          
            
  
TimeTable


	
class TimeTable

	TimeTable: Read in spike times from file and send out eventOut messages
at the specified times.


	
proc

	void (shared message field)      Shared message for process and reinit






	
setFilename()

	(destination message field)      Assigns field value.






	
getFilename()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setMethod()

	(destination message field)      Assigns field value.






	
getMethod()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getState()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
process()

	(destination message field)      Handle process call






	
reinit()

	(destination message field)      Handles reinit call






	
eventOut

	double (source message field)      Sends out spike time if it falls in current timestep.






	
filename

	string (value field)      File to read lookup data from. The file should be contain two columns
separated by any space character.






	
method

	int (value field)      Method to use for filling up the entries. Currently only method 4
(loading from file) is supported.






	
state

	double (value field)      Current state of the time table.













          

      

      

    

  

    
      
          
            
  
UniformRng


	
class UniformRng

	Generates pseudorandom number from a unform distribution.


	
setMin()

	(destination message field)      Assigns field value.






	
getMin()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setMax()

	(destination message field)      Assigns field value.






	
getMax()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
min

	double (value field)      The lower bound on the numbers generated






	
max

	double (value field)      The upper bound on the numbers generated













          

      

      

    

  

    
      
          
            
  
VClamp


	
class VClamp

	Voltage clamp object for holding neuronal compartments at a specific voltage.
This implementation uses a builtin RC circuit to filter the  command input and then use a PID to bring the sensed voltage (Vm from compartment) to the filtered command potential.
Usage: Connect the currentOut source of VClamp to injectMsg dest of Compartment. Connect the VmOut source of Compartment to set_sensed dest of VClamp. Either set command field to a fixed value, or connect an appropriate source of command potential (like the outputOut message of an appropriately configured PulseGen) to set_command dest.
The default settings for the RC filter and PID controller should be fine. For step change in command voltage, good defaults withintegration time step dt are as follows:


time constant of RC filter, tau = 5 * dt
proportional gain of PID, gain = Cm/dt where Cm is the membrane    capacitance of the compartment
integration time of PID, ti = dt
derivative time  of PID, td = 0





	
proc

	void (shared message field)      Shared message to receive Process messages from the scheduler






	
getCommand()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getCurrent()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getSensed()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setMode()

	(destination message field)      Assigns field value.






	
getMode()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTi()

	(destination message field)      Assigns field value.






	
getTi()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTd()

	(destination message field)      Assigns field value.






	
getTd()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTau()

	(destination message field)      Assigns field value.






	
getTau()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setGain()

	(destination message field)      Assigns field value.






	
getGain()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
sensedIn()

	(destination message field)      The VmOut message of the Compartment object should be connected here.






	
commandIn()

	(destination message field)        The command voltage source should be connected to this.






	
process()

	(destination message field)      Handles ‘process’ call on each time step.






	
reinit()

	(destination message field)      Handles ‘reinit’ call






	
currentOut

	double (source message field)      Sends out current output of the clamping circuit. This should be connected to the injectMsg field of a compartment to voltage clamp it.






	
command

	double (value field)      Command input received by the clamp circuit.






	
current

	double (value field)      The amount of current injected by the clamp into the membrane.






	
sensed

	double (value field)      Membrane potential read from compartment.






	
mode

	unsigned int (value field)      Working mode of the PID controller.


mode = 0, standard PID with proportional, integral and derivative all acting on the error.

mode = 1, derivative action based on command input

mode = 2, proportional action and derivative action are based on command input.









	
ti

	double (value field)      Integration time of the PID controller. Defaults to 1e9, i.e. integral action is negligibly small.






	
td

	double (value field)      Derivative time of the PID controller. This defaults to 0,i.e. derivative action is unused.






	
tau

	double (value field)      Time constant of the lowpass filter at input of the PID controller. This smooths out abrupt changes in the input. Set it to  5 * dt or more to avoid overshoots.






	
gain

	double (value field)      Proportional gain of the PID controller.













          

      

      

    

  

    
      
          
            
  
Variable


	
class Variable

	Variable for storing double values. This is used in Function class.


	
setValue()

	(destination message field)      Assigns field value.






	
getValue()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
input()

	(destination message field)      Handles incoming variable value.






	
value

	double (value field)      Variable value













          

      

      

    

  

    
      
          
            
  
VectorTable


	
class VectorTable

	This is a minimal 1D equivalent of the Interpol2D class. Provides simple functions for getting and setting up the table, along with a lookup function. This class is to be used while supplying lookup tables to the MarkovChannel class, in cases where the transition rate varies with either membrane voltage or ligand concentration.


	
setXdivs()

	(destination message field)      Assigns field value.






	
getXdivs()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setXmin()

	(destination message field)      Assigns field value.






	
getXmin()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setXmax()

	(destination message field)      Assigns field value.






	
getXmax()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getInvdx()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
setTable()

	(destination message field)      Assigns field value.






	
getTable()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getLookupvalue()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
getLookupindex()

	(destination message field)      Requests field value. The requesting Element must provide a handler for the returned value.






	
xdivs

	unsigned int (value field)      Number of divisions.






	
xmin

	double (value field)      Minimum value in table.






	
xmax

	double (value field)      Maximum value in table.






	
invdx

	double (value field)      Maximum value in table.






	
table

	vector<double> (value field)      The lookup table.






	
lookupvalue

	double,double (lookup field)      Lookup function that performs interpolation to return a value.






	
lookupindex

	unsigned int,double (lookup field)      Lookup function that returns value by index.













          

      

      

    

  

    
      
          
            
  
ZombieCaConc


	
class ZombieCaConc

	ZombieCaConc: Calcium concentration pool. Takes current from a channel and keeps track of calcium buildup and depletion by a single exponential process.









          

      

      

    

  

    
      
          
            
  
ZombieCompartment


	
class ZombieCompartment

	Compartment object, for branching neuron models.









          

      

      

    

  

    
      
          
            
  
ZombieFunction


	
class ZombieFunction

	ZombieFunction: Takes over Function, which is a general purpose function calculator using real numbers.


	
proc

	void (shared message field)      This is a shared message to receive Process messages from the scheduler objects.The first entry in the shared msg is a MsgDest for the Process operation. It has a single argument, ProcInfo, which holds lots of information about current time, thread, dt and so on. The second entry is a MsgDest for the Reinit operation. It also uses ProcInfo.






	
process()

	(destination message field)      Handles process call, updates internal time stamp.






	
reinit()

	(destination message field)      Handles reinit call.













          

      

      

    

  

    
      
          
            
  
testSched


	
class testSched

	
	
process()

	(destination message field)      handles process call













          

      

      

    

  _images/relax.png
Conc (mM)

Time (seconds)

4000





_images/relaxOsc_tut.png
Relaxation oscillator tutorial

Bistable

conc

Bistable Total [M]





_images/rdes9_spiny_active.png
0y 02 0 02-0b-09-08-
(Aw) jenualod ‘quay

02100108 09 0¥ 02 0O
03 8





_images/reacDiffBranchingNeuron.png
745






_images/repressillatorOsc.png
Repressillator tutorial

Elowitzand Leibler Nature 2000





_images/repris.png
0.0025 . . . . .
— TetR.Co
— lac.Co
00020 | — lelCo ]
— 00015 | ]
=
E
o
§
S 00010
0.0005 |
0.0000 - - - -
0 1000 2000 3000 4000 5000 6000

Time (seconds)





_images/rdes5_reacdiff.png





_images/rdes8_active.png
0y 02 0 02-0b-09-08-
(Aw) jennualod "quay

02100108 09 OF 0Z O
(wn) ouod ey






_images/rdes3_squid.png
Memb. Potential (mV)

40

Membrane potential

20

=20

-60

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Time (s)





_images/rdes4_osc.png
a Conc

400

350

300

250

s

o )
S Il
S a

n) uopeRUIIUOD

100

50

100 150 200

Time (s)

50






_images/ex7.3_4.png





_images/ex7.3_5.png





_images/ex7.3_2.png





_images/ex7.3_3.png





_images/ex7.5_a.png
Concentration (uM)

1800

1600

1400

1200

1000

800

600

400

200

Concentration of a

time = 98.0

50

100 150
position (voxels)

200

250






_images/ex7.5_a_later.png
Concentration (uM)

1800

1600

1400

1200

1000

800

600

400

200

Concentration of a

time = 245.0

50

100 150
position (voxels)

200

250






_images/ex7.3_6.png





_images/ex7.4_travelling_osc.png
Concentration (uM)

3000

2500

2000

1500

1000

500

Concentration of a

time = 198.0

50

100 150
position (voxels)

200

250






_images/ex7.5_b.png
Concentration (uM)

500

400

300

200

100

Concentration of b

time = 98.0

50

100 150
position (voxels)

200

250






_images/strongBis.png
Strong bistable tutorial

Ramakrishnan and Bhalla, PLoSCB 2008
+vefb +vefb

Exchange reaction





_images/ex7.5_s.png
Concentration (uM)

1200

1000

800

600

400

200

Concentration of s

time = 98.0

50

100 150
position (voxels)

200

250






_images/turingPatternTut.png
Turing pattern tutorial
Y aisauto-
‘\4 | binhibitsa
S -
J% astnmulatesb ] /

adiffuses less than b






_images/turing.png
05

04

Conc (mM)
=]
w

o
L¥]

01

0.0

time = 398

L L

40 60
Paosition along cylinder {microns)

100





_images/twoCells.png
PulseGen

presynaptic

SynHandler

postsynaptic





_images/tweakingParameters.png
0.006

0.005

0.004.

0.003

0.002

0.001

0.000
)

\\\/\\ AN

200 400 600

M.Co
M p.Co
M.Co

M p.Co

800

1000

1200





_images/sV6.png
10

08

06

04

02

00
o

100

0

20

%0

E)





_images/sV5.png
12

10

08

06

04

02

00
o

0

20

=0 W0





_images/simpleB.png
10

— concA
08 ¥ — conc
06
04
2 L ——
00

0 ™0 B0 ™0 = W0





_images/sV7.png
12

10

08

06

04

02

00

30

%0

20

50

00





_images/strongB.png
0.0010

— aCo
0008 — bcCo
} | — cCo ]
< 00006 -
E
o
§ 0.0004 i
0.0002 |- j
AS J
0.0000 n - -
200 300 400 600

Time (seconds)





_images/squid_demo.png
E
El






_images/Gallery_Moose_Multiscale.png
/‘

Trafficking models

hihr 918

g ge
L )

1
o
g HHlo

o

£l

ff
o

=
@
ES
)

( ‘~:;a ;

IIIlt

Electrical model

3

o

i





_images/Gallery_Moose_Multiscale1.png
/‘

Trafficking models

hihr 918

g ge
L )

1
o
g HHlo

o

£l

ff
o

=
@
ES
)

( ‘~:;a ;

IIIlt

Electrical model

3

o

i





_images/Chemical_run.png
¥) @ O Runfor(1000  |(s) currentTime:[1000 |(s) Preferences

~ editor: /Reaction[0]/model[0]/model | = run: /Reaction[o}/model[o}/model

BR#E ROO +

(] 010 Graph 1
— o
— sconc

0.08]

0.06|

0.04

0.02|

0.00!

0 20 40 60 8 100
Time (s)






_images/FB.png
000030 : : :
— Ras-MKKK * 100
0.00025 |- — MKKK-P
—  MKK-PP
—  MAPK-PP
000020 | ]
i
£ pooo1s | ]
g
=]
o
000010
0.00005 ]
0.00000
0 1000 2000 3000 2000 5000

Time (seconds)





_images/Help.png
EES
EN






_images/ex8.0_multiscale_KA_conc.png
Unphosph K_A conc

10

0.9

@ ~
S S
(W) uonenussu0d

©
S

05

15 20 25

Time (s)

10





_images/ex8.0_multiscale_cell_spiking.png
s
E

Memb. Potenti:

20

Membrane potential

10 15 20
Time (s)

25






_images/ex7.6_C.png
Concentration (uM)

2000

1750

1500

1250

1000

750

500

250

C conc

time =1,

10 15
position (voxels)

20

25





_images/ex8.0_multiscale_Ca.png
Chem Ca

2.0

n o
- —
(iWn) uonenuadU0d

05

0.0

15 20 25

Time (s)

10





_images/BufPool.png





_images/ex8.1_dend_Ca.png
Concentration (uM)

175

150

125

1.00

075

050

025

0.00

Dend Ca conc

time =7.3

10

15 20 25
position (voxels)

30

35

40






_images/ChemicalSignallingEditor.png





_images/ex8.2_Ca_dend.png
Ca in Dend

2 o g =m g =w o
T m 2 8 & 4 =
s 8 S8 & S o8 8

() uonenuadud

25

20

15

10

Time (s)





_images/ex8.0_multiscale_currInj.png
0.00100

0.00075

0.00050

0.00025

0.00000

~0.00025

~0.00050

~0.00075

~0.00100

current inj

10

15
Time (s)

20

25

30






_images/Addgraph.png





_images/ex8.1_ER_Ca.png
Concentration (uM)

460

440

420

400

380

360

ER Ca conc

time = 15.

10

15 20 25
position (voxels)

30

35

40






_images/ex8.2_Ca_spine.png
Concentration (uM)

80

60

40

20

Ca in Spine

AN

10 15 20 25
Time (s)






_images/sV2.png
10

08

06

04

02

00
o

00

0

%0

=0

30





_images/sV1.png
10

08

06

04

02

00
0

00

0

%0

0

300





_images/sV4.png
10

08

06

04

02

00
o

oo

0

20

%0

00





_images/sV3.png
10

08

06

04

02

00
o

00

0

%0

%0

500





_images/ex7.6_A.png
Concentration (uM)

1000

800

600

400

200

A conc

time = 1.0

10 15
position (voxels)

20

25





_images/ex8.3_chan_p.png
# of molecules

100

80

60

40

20

Amount of Phospho-chan

10

Time (s)

15

20

25






_images/ex8.3_gluR.png
Conductance of gluR

035

2 0 ) 0
4] 8 ] g
] B s s

(Su) 83ue1NpUOd XeW UEYD

0.10

25

20

15

10

Time (s)





_images/ex8.3_CaMKII_spine.png
Concentration (uM)

16

14

12

10

Conc of CaMKIl in spine

10 15
Time (s)

20

25






_images/ex8.3_Vm.png
s
E

Memb. Potenti:

Membrane potential

10 15
Time (s)

20

25






_images/func.png





_images/function.png
dz/dy

ANON S

-6
-8

—/ — z = c0 * exp(cl * x0) * cos(y0)

- - numpy computed

200008
—200000

—800000
—1000000
—1200000
—1400000 7

20
10

-10
=20
=30

dz/dt

— dz/dy0
- - numpy computed

L [ e

- - numpy computed

-40
o.

0 0.2 0.4 0.6 0.8 1.0





_images/ex9.0_passive_cell_morpho.png
0y 02 0 02-0b-09-08-
(Aw) jennualod "quiay






_images/findS.png
10

08

06

04

02

00
0

concA
concs
concc
concCpix
concCpix2

20

00

&0

0

00 1200





_static/plus.png





_static/up.png





_static/up-pressed.png





_images/ex8.2_Vm.png
s
E

Memb. Potenti:

Membrane potential

NN

10 15 20 25
Time (s)






_images/ex8.2_active_CaMKII.png
Active CaMKIl

2.5

2.0

) 9

() uonenuadud

05

0.0

25

20

15

10

Time (s)





_images/propBis.gif





_images/propBis.png
Propagating bistable tutorial

Exchange reaction

Diffusion alonga taperingcylinder





_images/neuronalcompartment.jpg
Coplsm

om

R ol mentrane

T L Exuacelliarmedum






_images/neuroncompartment.png





_images/rdes3.2_myelinated_axon.png





_images/randomSpike.png
0.04

0.02

0.00

~ <
o S
S S
T T
(QI0A) WA

-0.06

-0.08

-0.10

Time (s)





_images/rdes2_passive_squid.png
Memb. Potential (mV)

—45

Soma membrane potential

=50

=55

-60

0.05

0.10 0.15 0.20
Time (s)

0.25

0.30





_static/down.png





_static/down-pressed.png





_static/file.png





_static/moose_logo.png





_static/minus.png





_static/ajax-loader.gif





_static/comment-close.png





_static/comment-bright.png





_static/comment.png





_images/mapkFB.png





_images/mapkFB2.png
Conc (mM)

0.00035

0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000
0

MAPK_p.Co
PKC_dash_active.Co ||
PDGFR.Co
PDGF.Co

1000 2000 3000 2000 5000 6000





_images/grid.png





_images/KkitReaction.png





_images/MM_EnzIcon.png





_images/Kholodenko_tut.png
oomm mm

eeeeeeee






_images/KkitReacIcon.png





_images/MassActionEnzReac.png





_images/MatPlotLibConfigureSubplots.png
B «





_images/MM_EnzReac.png





_images/MassActionEnzIcon.png





_images/MatPlotLibDoUndo.png
o0





_images/MatPlotLibHomeIcon.png





_images/MatPlotLibPan.png





nav.xhtml

    
      Table of Contents


      
        		
          Indices and tables
        


        		
          Introduction
          
            		
              What is MOOSE and what is it good for?
            


          


        


        		
          Installation
          
            		
              Use pre-built packages
              
                		
                  pip
                


                		
                  Linux
                


                		
                  Mac OSX
                


                		
                  Docker Images
                


              


            


            		
              Building MOOSE
              
                		
                  Install dependencies
                


                		
                  Build moose
                


              


            


            		
              Graphical User Interface (GUI)
            


            		
              Building moogli
            


          


        


        		
          Quick Start
          
            		
              Interactive Tutorials
            


            		
              MOOSE GUI: Graphical interface for MOOSE
              
                		
                  Contents
                


                		
                  Introduction
                


                		
                  Interface
                


              


            


            		
              Getting started with python scripting for MOOSE
              
                		
                  Coding basics and how to use this document
                


                		
                  Importing moose and accessing documentation
                


                		
                  Setting the properties of elements: accessing fields
                


                		
                  Putting them together: setting up connections
                


                		
                  Scheduling
                


                		
                  Running the simulation
                


                		
                  Some more details
                


                		
                  Moving on
                


              


            


            		
              Demonstration of basic functionalities
              
                		
                  Load and Run a Model
                


                		
                  Start, Stop, and setting clocks
                


                		
                  Run Python from MOOSE
                


              


            


            		
              MOOSE Classes
              
                		
                  Messages
                


                		
                  Time
                


                		
                  Vectors
                


                		
                  Data Entries
                


                		
                  Interpolation
                


                		
                  Function
                


                		
                  SymCompartment
                


                		
                  Tables
                


                		
                  Data Types
                


                		
                  Threading
                


                		
                  PyMoose
                


                		
                  Mathematics with MOOSE
                


                		
                  Computing an arbitrary function
                


                		
                  Differential Equation Solving
                


                		
                  Harmonic Oscillatory Function
                


                		
                  Lotka-Voltera Model
                


                		
                  Vary Concentration with mathematical function
                


              


            


          


        


        		
          Cook Book
          
            		
              Single Neuron Electrical Aspects (BioPhysics)
              
                		
                  Neuron Modeling
                


                		
                  Neuronal simulations in MOOSEGUI
                


                		
                  Load and Run simple models
                


                		
                  Simple Examples
                


              


            


            		
              Chemical Aspects
              
                		
                  Interface for chemical kinetic models in MOOSEGUI
                


                		
                  Load - Run - Save models
                


                		
                  Simple Examples
                


                		
                  Tutorials
                


              


            


            		
              Networking
              
                		
                  Simple Examples
                


                		
                  Tutorials
                


              


            


            		
              MultiScale Modeling
              
                		
                  Simple Examples
                


              


            


          


        


        		
          Rdesignuer
          
            		
              Rdesigneur: Building multiscale models
              
                		
                  Contents
                


                		
                  Introduction
                


                		
                  Rdesigneur examples
                


                		
                  Rdesigneur command reference
                


              


            


            		
              Rdesigneur Examples
              
                		
                  Building Chemical-Electrical Signalling Models
                


              


            


          


        


        		
          Teaching Tutorials
          
            		
              Chemical Bistables
              
                		
                  Simple Bistables
                


                		
                  Scale Volumes
                


                		
                  Strong Bistable System
                


                		
                  MAPK Feedback Model
                


                		
                  Propogation of a Bistable System
                


                		
                  Steady-state Finder
                


                		
                  Dose Response (Under construction)
                


              


            


            		
              Chemical Oscillators
              
                		
                  Slow Feedback Oscillator
                


                		
                  Turing Pattern Oscillator in One Dimension
                


                		
                  Relaxation Oscillator
                


                		
                  Repressilator
                


              


            


            		
              Squid giant axon
            


          


        


        		
          Graphics
          
            		
              MOOGLI
              
                		
                  Use Moogli for plotting
                


              


            


            		
              MatPlotLib
              
                		
                  Displaying time-series plots
                


                		
                  Animation of values along axis
                


              


            


          


        


        		
          References
          
            		
              How to use the documentation
              
                		
                  MOOSE Functions
                


                		
                  Class Hierarchy
                


              


            


          


        


        		
          Doxygen
        


        		
          Release Notes
        


        		
          Series chennapoda
          
            		
              Version 3.2.0
            


          


        


        		
          Series chamcham
          
            		
              Version 3.1.3
            


          


        


        		
          Known issues
        


      


    
  

_images/Moose1.png
7 Broph Y = Q 0O~

editor: /Kholodenko[0)/model run: /Kholodenko[o}/model

-






_images/MooseGuiMenuImage.png
O ™™ File Edit View Help





_images/MatPlotLibSave.png





_images/MatPlotLibZoom.png





_images/PropertyEditor.png
Edit: /Reaction[0)/model[0]/... B 8
Field Value

name B
className  Pool

n 20073805.0

ninit 0.0

conc (mM) 0.0333333333333
conclnit (mM) 0.0

volume 1e-15.

The total conc. of B is 30uM|





_images/SimulationControl.png
O ® gunfnr‘ﬁl)(]o.(] |(s) current Time: \m)uou |(s) Preferences





_images/PlotWindowIcons.png
% %%

200 +& BVYE@E





_images/Pool.png





_images/chemDoseResponse.png
bvsaup
b vs a down

b vs a mid






_images/chemical_CS.png
FBrand =~ 8 OA

run: /Reaction[0]/model[0]/model | editor: /Reaction[0]/model[0}/model Edit: /Reaction[0)/model[0/C... @&
Field Value
name B
X className  Pool
n 0.0
ninit 0.0

conc(mM) 0.0
conclnit (mM) 0.0

volume (m3) | 1e-15






_images/ex2.1_vclamp_a.png
Soma membrane potential

-45.0

475

-50.0

(mv)

-52.5

-55.0

-57.5

g
5
I
5
£
o}
=

-60.0

—62.5

650 —

0.00 005 010 015 020 025 030
Time (s)





_images/ex2.1_vclamp_b.png
Holding Current (nA)

1000

500

-500

~1000

Soma holding current

0.00

0.05

010 015 020
Time (s)

025

030






_images/delgraph.png





_images/doseR.png
0005

0005

0004

0003

Response

0002

0001

0000

Dose-Reponse Curve for a bistable system

o oncA

100

10°
Dose

100

10°





_images/ex3.3_AP_collision.png
20

(Aw) |enusiod “quia
8 g

° i 1

-60

0.0198

Time=

-80





_images/ex4.0_scaledSoma.png
(Aw) [eRUI0d “quISW
N ¥ o @ g o %
R N SR A

o w
i

Time= 0.032





_images/ex3.1_squid_vclamp.png
Holding Current (nA)

1250

1000

750

500

250

-250

-500

Soma holding current

0.00

0.05

010 015 020
Time (s)

025

030






_images/ex3.2_axon_propagating_AP.png
(Aw) enuaod “qusi

8

20
0

-40
-60
-80

0.02595 I

Time=





_images/ex4.2_sine_stim.png
inject current (nA)

10

0.8

0.6

0.4

02

0.0

Stimulus current

20

40 60
Time (s)

80

100






_images/ex4.2_spiking.png
Membrane potential

20

s
E

Memb. Potenti:

0 20 40 60 80 100
Time (s)





_images/ex4.1_ballAndStick.png
(Aw) enuatod “qusi

Time= 0.037





_images/ex7.0_spatial_chem_osc.png
(Wn) uonje3uadU0D
3 o 3
g 2 8
] a S

350
300
250
50

°
N
IN
N

Time=





_images/ex7.1_diffusive_gradient.png
concentration ( mM )

10

0.8

0.6

0.4

02

0.0

L)

°

25

50

75 100 125
position ( microns )

150

175

200






_images/ex5.0_random_syn_input.png
Soma membrane potential

s
E

-50

-55

Memb. Potenti:

0.00 005 010 015 020 025 030
Time (s)





_images/ex5.1_periodic_syn_input.png
Soma membrane potential

-45.0

475

-50.0

-52.5

-55.0

-57.5

g
5
I
5
£
o}
=

-60.0

—62.5

~65.0

0.00 005 010 015 020 025 030
Time (s)





_images/ex7.3_1.png





_images/ex7.2_CICR_static.png
Dendritic Ca

12

10

@ © -

(Wn) uonenussu0d

35

20 25
Time (s)

15

10





_images/ex7.2_CICR_wave_lastFrame.png
Concentration (uM)

10

Dendritic Ca

time = 39.6

4
position (voxels)






